Consider the following product mix problem:
Three machine shops A, B, C produces three types of products X, Y, Z respectively. Each product involves operation of each of the machine shops. The time required for each operation on various products is given as follows:
Machine shops
Products A B C Profit per unit X 10 7 2 Birr 12 Y 2 3 4 Birr 3 Z 1 2 1 Birr 1 Available Hours 100 77 80 Make the Mathematical model of the above primal problem to maximise the profit and then make the dual problem
The linear program is
"Maximize:z=30x_1+40x_2+35x_3\\\\Subject to:\\\\3x_1+4x_2+2x_3\\le90\\\\2x_1+x_2+2x_3\\le54\\\\x_1+3x_2+2x_3\\le43"
with all variables non-negative.
Next we compute the optimal solution, to do this we put the linear program in standard form:
"Maximize:z=30x_1+40x_2+35x_3+0x_4+0x_5+0x_6\\\\Subject to:\\\\3x_1+4x_2+2x_3+x_4\\le90\\\\2x_1+x_2+2x_3+x_5\\le54\\\\x_1+3x_2+2x_3+x_6\\le43"
with all variables non-negative.
Subsequently, we obtain our Tableau 1
"\\begin{matrix}\n &x_1 & x_2 &x_3 &x_4&x_5&x_6\\\\ &30&40&35&0&0&0 \\\\ \\hline\n x_4 (0) & 3 &4&2&1&0&0&90\\\\x_5 (0) & 2 &1&2&0&1&0&54\\\\x_6 (0) & 1 &3&2&0&0&1&43\\\\ & -30 &-40&-35&0&0&0&0\n\\end{matrix}"
Next we locate the most negative number in the bottom row(-40). Then we compute ratios of positive numbers in our work column. Therefore our pivot element is 4. Using row reduction method, we reduce our pivot element to 1 and every other elements in the work column to 0, thereby generating Tableau 2.
"\\begin{matrix}\n &x_1 & x_2 &x_3 &x_4&x_5&x_6\\\\ &30&40&35&0&0&0 \\\\ \\hline\n x_2 (40) & \\frac{3}{4} &1&\\frac{1}{2}&\\frac{1}{4}&0&0&\\frac{45}{2}\\\\x_5 (0) & \\frac{5}{4} &0&\\frac{3}{2}&\\frac{-1}{4}&1&0&\\frac{63}{2}\\\\x_6 (0) & \\frac{-5}{4} &0&\\frac{1}{2}&\\frac{-3}{4}&0&1&\\frac{51}{2}\\\\& 0 &0&-15&10&0&0&900\n\\end{matrix}"
We notice there is still a negative element in the last row therefore repeating the process above we obtain Tableau 3.
"\\begin{matrix}\n &x_1 & x_2 &x_3 &x_4&x_5&x_6\\\\ &30&40&35&0&0&0 \\\\ \\hline\n x_2 (40) & \\frac{1}{3} &1&0&\\frac{1}{3}&\\frac{-1}{3}&0&12\\\\x_3 (35) & \\frac{5}{6} &0&1&\\frac{-1}{6}&\\frac{2}{3}&0&21\\\\x_6 (0) & \\frac{-5}{3} &0&0&\\frac{-2}{3}&\\frac{2}{3}&1&15\\\\&\\frac{75}{6} &0&0&\\frac{25}{4}&10&0&1215\n\\end{matrix}"
Since there are no negative values in our last row. The solution is optimal. The optimal solution is "x_1=0,x_2=40,x_3=35,x_4=0,x_5=0,x_6=0."
Comments
Leave a comment