1.        Compare the following portfolios on performance using Sharpe, Treynor and Jensen’s measure and recommend a suitable portfolio for investment.                                              (10 Marks)
Â
Â
Â
Portfolio
Avg. returns
Std. deviation
Beta
A
15%
0.35
1.20
B
12%
0.15
0.85
C
10%
0.25
1.25
Market Index
12%
0.25
1.00
Â
Risk free rate – 6%.
A
B
C
Market index
Portfolio return
15%
12%
10%
12%
Standard deviation
0.35
0.15
0.25
0.25
Beta
1.20
0.85
1.25
1.00
Risk-free rate 6%
i)       Sharpe ratio=PR−RFR​/SD
Where: PR=portfolio return
RFR=risk-free rate
SD=standard deviation
               A= (0.15-0.06)/0.35= 0.25
               B= (0.12-0.06)/0.15=0.4
               C= (0.10-0.06)/0.25=0.16
               Market= (0.12-0.06)/0.25=0.24
A portfolio is better because it has a superior risk adjust return
ii)      Treynor Measure= PR−RFR​/β
Where: PR=portfolio return
RFR=risk-free rate
β=beta
A = (0.15- 0.06)/1.20 = 0.075
B= (0.12-0.06)/0.85= 0.071
C= (0.10-0.06)/1.25= 0.032
Market= (0.12-0.06)/1.00= 0.06
The higher the Treynor ratio the better, A and B are better because they are above the market index.
iii)    Jenson’s alpha=PR−CAPM
Where: PR=portfolio return
CAPM=risk-free rate+β (return of market- risk-free rate of return)
 CAPM for A= 0.06+1.20(0.12-0.06) = 13.2%
       Jenson’s alpha (JA) = 15-13.2= 1.8%
CAPM for B= 0.06+0.85(0.12-0.06) = 11.1%
                                       JA= 12-11.1= 0.9%
CAPM for C= 0.06+1.25(0.12-0.06) = 13.5%
                                       JA= 10-13= -3.5%
A did well.
Comments
thank you so much for your answer
Leave a comment