Solution.
p2 = 1 bar;
p1 = 5 bar;
T3 = 283 K;
T1 = 298K;
pv1.3=constant;
L/d = 1.5;
cp = 1.005 kJ/kgK;
cv = 0.71 kJ/kgK;
"\\dfrac{T_1}{T_2} = (\\dfrac{p_1}{p_2})^ \\dfrac{\\gamma-1}{\\gamma};"
"\\dfrac{298}{T_2} = (\\dfrac{5}{1})^ \\dfrac{1.35-1}{1.35} =1.52 ;"
"T_2 =298\/1.52 = 196K;"
"theoretical C.O.P =\\dfrac{T_2}{T_1 - T_2} ;"
"theoretical C.O.P = \\dfrac{196}{298 - 196} = 1.92" ;
"actual C.O.P = 0.5 \\sdot 1.92 = 0.96;"
"Refrigerating effect per kg of air\n= cp (T3 \u2013 T2) = 1.005 (283 \u2013 196) = 87.44 kJ\/kg."
"V3 = \\dfrac{mRT}{p_2};"
"R = (c_p \u2013 c_v) = 1.005 \u2013 0.71 = 0.295 kJ\/kg K;"
"Refrigerating effect produced by the refrigerating machine\n= 6 \u00d7 14000 = 84000 kJ\/h;"
"Hence mass of air in circulation\n= 84000\/(87.44\\sdot60) = 16.01 kg\/min."
"V_3 =( 16.01\\sdot0.295\\sdot1000\\sdot283)\/1.0\\sdot10^5 = 13.36 m^3\/min;"
Swept volume per stroke =13.36/(2"\\sdot" 300) =0.02m3;
V = 0.02"\\sdot" 0.85 = 0.019 m3;
"\\pi\/4\\sdot d^2\\sdot l = 0.019; l = 1.5d;"
"d = 0.016m; l =0.024m;"
Answer: theoretical C.O.P =1.92;
actual C.O.P = 0.96;
d=0.016m;
l = 0.024 m.
Comments
Leave a comment