Given:-
"\\\\Inlet\\,pressure\\,of \\,the\\,condenser\\,(P_{1})=180\\,psi\\\\[10pt]\nInlet\\,Temperature\\,of \\,the\\,condenser\\,(T_{1})=140F\\,\\\\[10pt]\nFlow\\,rate\\,of\\,the\\,refrigerant\\,(m)=8.3\\,lbm\/min\\\\[10pt]\nExit\\,pressure\\,(P_{2})=180lbm\/min\\\\[10pt]\nQuality \\,of\\,refrigant\\,at\\,exit\\,of\\,condenser\\,(x_{2})=0\\\\[10pt]\nPower\\,input\\,to\\,the\\,compressure\\,(w_{net})=103.25\\,Btu\/min\\\\[10pt]"
Find coefficient of performance (C.O.P)
Now,
"\\\\From\\, Superheated\\, refrigerant\\,-134a\\,table\\\\[10pt]\nFrom\\,steam\\,table\\,at\\,(P_{1})=180\\,psi\\,and\\,T_{1}=35C\\\\[10pt]\nAt\\,,h_{1}=124.17\\,Btu\/lbm\\\\[10pt]\n\\\\From\\, Saturated\\, refrigerant\\,-134a\\,table\\\\[10pt]\nFrom\\,steam\\,table\\,at\\,(P_{2})=180\\,psi\\,and\\,x_{2}=0\\\\[10pt]\nAt\\,,h_{2}=51.5Btu\/lbm"
Now,
The heat rejected in the condenser is expressed as,
"\\\\Q=m(h_{1}-h_{2})\\\\[10pt]\nQ=8.3\\times (124.17-51.50)\\\\[10pt]\nQ=603.17\\,Btu\/min"
So,
coefficient of performance (C.O.P)
"\\\\(COP)_{Hp}=\\frac{Q_{H}}{W_{net}}\\\\[10pt]\n\n(COP)_{Hp}=\\frac{603.17}{103.25}=5.85\\\\[10pt]"
Therefore, COP of heat pump = 5.85
Comments
Leave a comment