Question #251990

Draw lines/graph for each item;

5. Find the angle from the line 2x + y – 8 = 0 to the line x + 3y + 4 = 0. Draw the lines and

locate the angle formed.

6. Two sides of a square lie along the lines 2y = 20 – 3x and 3x + 2y = 48. Find the area of

the square.


1
Expert's answer
2021-10-19T13:26:02-0400

5.


2x+y8=0=>y=2x+82x + y - 8 = 0=>y=-2x+8

slope1=m1=2slope_1=m_1=-2

x+3y+4=0=>y=13x43x + 3y + 4 = 0=>y=-\dfrac{1}{3}x-\dfrac{4}{3}

slope2=m2=13slope_2=m_2=-\dfrac{1}{3}

θ=tan1m2m11+m1m2=tan113(2)1+(13)(2)\theta=\tan^{-1}\dfrac{m_2-m_1}{1+m_1m_2}=\tan^{-1}\dfrac{-\dfrac{1}{3}-(-2)}{1+(-\dfrac{1}{3})(-2)}

=tan15735.5°=\tan^{-1}\dfrac{5}{7}\approx35.5\degree




6.



2y=203x=>y=32x+102y = 20-3x=>y=-\dfrac{3}{2}x+10

slope1=m1=32slope_1=m_1=-\dfrac{3}{2}

3x+2y=48=>y=32x+243x + 2y = 48 =>y=-\dfrac{3}{2}x+24

slope2=m2=32=m1slope_2=m_2=-\dfrac{3}{2}=m_1

Two lines are parallel.

The line is perpendicular to these parallel lines


slope3=m2=132=23slope_3=m_2=\dfrac{-1}{-\dfrac{3}{2}}=\dfrac{2}{3}

Then the equation of the perpendicular line is


y=23xy=\dfrac{2}{3}x

32x+10=23x=>x=6013,y=4013-\dfrac{3}{2}x+10=\dfrac{2}{3}x=>x=\dfrac{60}{13}, y=\dfrac{40}{13}

32x+24=23x=>x=14413,y=9613-\dfrac{3}{2}x+24=\dfrac{2}{3}x=>x=\dfrac{144}{13}, y=\dfrac{96}{13}

A=d2=(144139613)2+(60134013)2A=d^2=(\dfrac{144}{13}-\dfrac{96}{13})^2+(\dfrac{60}{13}-\dfrac{40}{13})^2

=1904169(square units)=\dfrac{1904}{169} (square\ units)




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS