Considering the jump to the pool,
v 2 = u 2 + 2 g h w h e r e u = 0 h = h e i g h t o f t h e t o w e r v = f i n a l v e l o c i t y v^2 = u^2 + 2gh \newline
where \space u=0 \newline
h= height \space of \space the \space tower \newline
v= final \space velocity v 2 = u 2 + 2 g h w h ere u = 0 h = h e i g h t o f t h e t o w er v = f ina l v e l oc i t y
g = 9.81 m s − 2 ∵ v = 2 g h v = 2 ∗ 9.81 ∗ 18 = 18.79 m s − 1 ‾ ‾ T h i s v a c t s a s u ′ f o r d e a c c e l a r a t i o n i n t h e w a t e r F o r t h e w a t e r , v ′ 2 = u ′ 2 − 2 a s w h e r e v ′ = 0 , u ′ = 18.79 m s − 1 s = 2.2 m s o l v i n g t h i s g i v e s a = 80.24 m s − 2 ‾ ‾ S u b s t i t u d i n g t o F = m a w h e r e m = 80 k g F = 80 ∗ 80.24 = 6419.2 N ‾ ‾ g =9.81m s^{-2} \newline
\because v=\sqrt{2gh} \newline
v=\sqrt{2*9.81*18} \newline
=\underline{\underline{18.79ms^{-1} }} \\~\\
This \space v \space acts \space as \space u' \space for \space deaccelaration \space in \space the \space water \\~\\
For \space the \space water, \newline
v'^2 = u'^2 -2as \newline
where\space v'=0 , \newline
u'=18.79ms^{-1} \newline
s=2.2m \\~\\
solving \space this \space gives \\~\\
a=\underline{\underline{80.24ms^{-2}}} \\~\\ Substituding \space to \space F=ma \newline
where \space m= 80kg \newline
F=80*80.24 \newline
=\underline{\underline{6419.2N}} g = 9.81 m s − 2 ∵ v = 2 g h v = 2 ∗ 9.81 ∗ 18 = 18.79 m s − 1 T hi s v a c t s a s u ′ f or d e a cce l a r a t i o n in t h e w a t er F or t h e w a t er , v ′2 = u ′2 − 2 a s w h ere v ′ = 0 , u ′ = 18.79 m s − 1 s = 2.2 m so l v in g t hi s g i v es a = 80.24 m s − 2 S u b s t i t u d in g t o F = ma w h ere m = 80 k g F = 80 ∗ 80.24 = 6419.2 N
Comments