Question #100518
A Man of mass 80 kg dives into a swimming pool from a tower of height 18 m. He was found to go down in water by 2.2 m and then started rising. Find the average resistance of water. Neglect the air resistance of water take value of, g =9.81m/s2
1
Expert's answer
2019-12-20T04:48:18-0500

Considering the jump to the pool,


v2=u2+2ghwhere u=0h=height of the towerv=final velocityv^2 = u^2 + 2gh \newline where \space u=0 \newline h= height \space of \space the \space tower \newline v= final \space velocity



g=9.81ms2v=2ghv=29.8118=18.79ms1 This v acts as u for deaccelaration in the water For the water,v2=u22aswhere v=0,u=18.79ms1s=2.2m solving this gives a=80.24ms2 Substituding to F=mawhere m=80kgF=8080.24=6419.2Ng =9.81m s^{-2} \newline \because v=\sqrt{2gh} \newline v=\sqrt{2*9.81*18} \newline =\underline{\underline{18.79ms^{-1} }} \\~\\ This \space v \space acts \space as \space u' \space for \space deaccelaration \space in \space the \space water \\~\\ For \space the \space water, \newline v'^2 = u'^2 -2as \newline where\space v'=0 , \newline u'=18.79ms^{-1} \newline s=2.2m \\~\\ solving \space this \space gives \\~\\ a=\underline{\underline{80.24ms^{-2}}} \\~\\ Substituding \space to \space F=ma \newline where \space m= 80kg \newline F=80*80.24 \newline =\underline{\underline{6419.2N}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS