Question #86839
Let X₁,X₂ ,...,Xₙ be a random sample from a Binomial distribution with parameters n and p, both unkown. Obtain estimators of n and p, using method of moments.
1
Expert's answer
2019-04-01T08:27:25-0400

Since we know that


E[x]=np,\text{E}[x]=np,

Var[x]=np(1p),\text{Var}[x]=np(1-p),

we can express pp and nn so that they are


p=1Var[x]E[x],p=1-\frac{\text{Var}[x]}{\text{E}[x]},n=E[x]p=E2[x]E[x]Var[x].n=\frac{\text{E}[x]}{p}=\frac{\text{E}^2[x]}{\text{E}[x]-\text{Var}[x]}.

On the other hand, we know that sample mean and sample variance are:


E[x]=xμ=1ni=1nxi,\text{E}[x]=x_\mu=\frac{1}{n}\sum_{i=1}^{n}x_i,


Var[x]=S(x)=1ni=1n(xixμ)2,\text{Var}[x]=S(x)=\frac{1}{n}\sum^{n}_{i=1}(x_i-x_\mu)^2,

hence


p=11ni=1n(xixμ)21ni=1nxi,p=1-\frac{\frac{1}{n}\sum^{n}_{i=1}(x_i-x_\mu)^2}{\frac{1}{n}\sum_{i=1}^{n}x_i},

n=(1ni=1nxi)21ni=1nxi1ni=1n(xixμ)2.n=\frac{(\frac{1}{n}\sum_{i=1}^{n}x_i)^2}{\frac{1}{n}\sum_{i=1}^{n}x_i-\frac{1}{n}\sum^{n}_{i=1}(x_i-x_\mu)^2}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS