Solve the differential equation of the following linear differential equation. Show complete solution.
x dy/dx + y = x^3
xdydx+y=x3dydx+yx=x2Integrating factor=e∫1xdx=xy⋅x=∫x⋅x2dx+ky⋅x=x44+ky=x34+kxx\dfrac{dy}{dx}+y=x^3\\ \dfrac{dy}{dx}+\dfrac{y}{x}=x^2\\ \text{Integrating factor}=e^{\int{\dfrac{1}{x}dx}}=x\\ y\cdot{x}=\int{x\cdot{x^2dx}}+k\\ y\cdot{x}=\dfrac{x^4}{4}+k\\ y=\dfrac{x^3}{4}+\dfrac{k}{x}xdxdy+y=x3dxdy+xy=x2Integrating factor=e∫x1dx=xy⋅x=∫x⋅x2dx+ky⋅x=4x4+ky=4x3+xk
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments