Use the Euler's method and Runge-Kutta method for systems to approximate y1(0.72+0.72), y2(0.72), y2(0.72+0.72) of the following systems of first-order differential equations:
dy1/dx=y1-y2+2, y1(0)= -1
dy2/dx= -y1+y2+4x
y2(0)=0 ; 0 ≤ x ≤ 2
"\\mathrm{A\\:second\\:order\\:linear,\\:homogeneous\\:ODE\\:has\\:the\\:form\\:of\\:}\\:\\:ay''+by'+cy=0\\\\\n\\mathrm{For\\:an\\:equation\\:}ay''+by'+cy=0\\mathrm{,\\:assume\\:a\\:solution\\:of\\:the\\:form\\:}e^{\u03b3t}\\\\\n\\mathrm{Rewrite\\:the\\:equation\\:with\\:}y=e^{\u03b3t}\\\\\n\\left(\\left(e^{\u03b3t}\\right)\\right)''\\:-e^{\u03b3t}=0\\\\\ne^{\u03b3t}\\left(\u03b3^2-1\\right)=0\\\\\n\u03b3=1,\\:\u03b3=-1\\\\\n\\mathrm{For\\:two\\:real\\:roots\\:}\u03b3_1\\ne \\:\u03b3_2\\mathrm{,\\:the\\:general\\:solution\\:takes\\:the\\:form:\\quad }y=c_1e^{\u03b3_1\\:t}+c_2e^{\u03b3_2\\:t}\\\\\ny=c_1e^t+c_2e^{-t}\\\\\ny=e^t+e^{-t}"
Comments
Leave a comment