Part a
"I^2R = 12.2^2R+ (\\frac{12.2}{\\sqrt{12.2}})^2R\\\\\nI^2=12.2^2+12.2\\\\\n\\mathrm{Add\\:the\\:numbers:}\\:148.84+12.2=161.04\\\\\nI^2=161.04\\\\\n\\mathrm{For\\:}x^2=f\\left(a\\right)\\mathrm{\\:the\\:solutions\\:are\\:}x=\\sqrt{f\\left(a\\right)},\\:\\:-\\sqrt{f\\left(a\\right)}\\\\\nI=\\sqrt{161.04}\\\\\nI=12.69015A"
Part b
"I^2R=10^2R+\\left(\\frac{20}{\\sqrt{20}}\\right)^2R\\\\\nI^2=10^2+\\left(\\frac{20}{\\sqrt{20}}\\right)^2\\\\\nI^2=10^2+2^2\\cdot \\:5\\\\\n\\mathrm{Add\\:the\\:numbers:}\\:100+20=120\\\\\nI^2=120\\\\\n\\mathrm{For\\:}x^2=f\\left(a\\right)\\mathrm{\\:the\\:solutions\\:are\\:}x=\\sqrt{f\\left(a\\right)},\\:\\:-\\sqrt{f\\left(a\\right)}\\\\\nI=\\sqrt{120},\\:I=-\\sqrt{120}\\\\\nI=2\\sqrt{30}\\\\\nI=10.95445A"
Comments
Leave a comment