By substituting the value of x in the following, first compute y and then represent y in Radix and Diminished-Radix complement formats (for respective Radix),
iii (x)10 + (1011)2 = ( y )8
iv (x)10 × (15)8 = ( y )2
value of x is 49
Part iii
(1011)2 = 1110
49010+01110‾\underline{\begin{array}{cc} \space \space \space \space 490_{10} \\ + 011_{10} \end{array}} 49010+01110 X+Y‾\underline{\begin{array}{cc} X \\ + Y \end{array}}X+Y
Z
49010+01110‾\underline{\begin{array}{cc} \space \space \space \space 490_{10} \\ + 011_{10} \end{array}} 49010+01110
50110
Hence discarding the leading 1 the result is 501.
Part iv
49010+12010‾\underline{\begin{array}{cc} \space \space \space \space 490_{10} \\ + 120_{10} \end{array}} 49010+12010 X+Y‾\underline{\begin{array}{cc} X \\ + Y \end{array}}X+Y
49010+12010‾\underline{\begin{array}{cc} \space \space \space \space 490_{10} \\ + 120_{10} \end{array}} 49010+12010
61010
Hence the result is 610
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments