If two events, A and B, are such that P(A) = .5, P(B) = .3, and P(AnB) = 1, find
the following
a. P(A|B)
b. P(B|A)
c. P(A|A UB)
d. P(A|ANB)
e. P(ANB|AUB)
a. P(A|B)
"\\frac{P(AnB)}{P(B)}=\\frac{0.2}{0.5}=\\frac{2}{5}"
b. P(B|A)
"\\frac{P(BnA)}{P(A)}=\\frac{0.2}{0.3}=\\frac{2}{3}"
c. P(A|A UB)
"\\frac{P(An(AnB))}{P(AuB)}=\\frac{P(A)}{P(AuB)}=\\frac{0.5}{0.5+0.3-0.1}=\\frac{0.5}{0.7}=\\frac{5}{7}"
d. P(A|ANB)
"\\frac{P((A)n(P(AnB))}{P(AuB)}=\\frac{P(A)}{1-P(AnB)}=\\frac{0.5}{1-0.1}=\\frac{0.5}{0.9}=\\frac{5}{9}"
e. P(AnB|AUB)
"\\frac{P((AnB)(AuB))}{P(AuB)}=\\frac{P(AnB)}{P(AuB)}=\\frac{0.2}{0.5+0.3-0.1}=\\frac{0.2}{0.7}=\\frac{2}{7}"
Comments
Leave a comment