Question #210133

Q2

if two events, A and B, are such that P(A) = .5, P(B) = .3, and P(A intersection B) = .1, findthe following:

a).P(A|B)

b). P(B|A)

c).P(A|AUB)

d).P(A|A intersection B)

e). P(A intersection B|A U B)


1
Expert's answer
2021-06-28T08:53:03-0400

a).

P(AB)=P(AB)P(B)P(AB)=0.1P(B)=0.3P(AB)=0.10.3=13P(A|B)=\frac{P(A\bigcap B)}{P(B)}\\ P(A\bigcap B)=0.1\\ P(B)=0.3\\ P(A|B)=\frac{0.1}{0.3}=\frac{1}{3}\\

b).

P(BA)=P(BA)P(A)P(BA)=P(AB)=0.1P(A)=0.5P(BA)=0.10.5=15P(B|A)=\frac{P(B\bigcap A)}{P(A)}\\ P(B\bigcap A)=P(A\bigcap B)=0.1\\ P(A)=0.5\\ P(B|A)=\frac{0.1}{0.5}=\frac{1}{5}\\

c).

P(AAB)=P(A(AB))P(AB)P(AAB)=P(A)P(AB)P(A)=0.5P(AB)=P(A)+P(B)P(AB)P(AB)=0.5+0.30.1=0.7P(AAB)=0.50.7=57P(A|A\bigcup B)=\frac{P(A\bigcap (A\bigcup B))}{P(A\bigcup B)}\\ P(A|A\bigcup B)=\frac{P(A)}{P(A\bigcup B)}\\ P(A)=0.5\\ P(A\bigcup B)=P(A)+P(B)-P(A\bigcap B)\\ P(A\bigcup B)=0.5+0.3-0.1=0.7\\ P(A|A\bigcup B)=\frac{0.5}{0.7}=\frac{5}{7}\\

d).

P(AAB)=P(A(AB))P(AB)P(AAB)=P(AB)P(AB)=1P(A|A\bigcap B)=\frac{P(A\bigcap (A\bigcap B))}{P(A\bigcap B)}\\ P(A|A\bigcap B)=\frac{P(A\bigcap B)}{P(A\bigcap B)}=1\\

e).

P(ABAB)=P(ABAB)P(AB)P(ABAB)=P(AB)P(AB)P(ABAB)=0.10.7=17P(A\bigcap B|A \bigcup B)=\frac{P(A\bigcap B\bigcap A \bigcup B)}{P(A \bigcup B)}\\ P(A\bigcap B|A \bigcup B)=\frac{P(A\bigcap B)}{P(A \bigcup B)}\\ P(A\bigcap B|A \bigcup B)=\frac{0.1}{0.7}=\frac{1}{7}\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS