Q2
if two events, A and B, are such that P(A) = .5, P(B) = .3, and P(A intersection B) = .1, findthe following:
a).P(A|B)
b). P(B|A)
c).P(A|AUB)
d).P(A|A intersection B)
e). P(A intersection B|A U B)
a).
"P(A|B)=\\frac{P(A\\bigcap B)}{P(B)}\\\\\nP(A\\bigcap B)=0.1\\\\\nP(B)=0.3\\\\\nP(A|B)=\\frac{0.1}{0.3}=\\frac{1}{3}\\\\"
b).
"P(B|A)=\\frac{P(B\\bigcap A)}{P(A)}\\\\\nP(B\\bigcap A)=P(A\\bigcap B)=0.1\\\\\nP(A)=0.5\\\\\nP(B|A)=\\frac{0.1}{0.5}=\\frac{1}{5}\\\\"
c).
"P(A|A\\bigcup B)=\\frac{P(A\\bigcap (A\\bigcup B))}{P(A\\bigcup B)}\\\\\nP(A|A\\bigcup B)=\\frac{P(A)}{P(A\\bigcup B)}\\\\\nP(A)=0.5\\\\\nP(A\\bigcup B)=P(A)+P(B)-P(A\\bigcap B)\\\\\nP(A\\bigcup B)=0.5+0.3-0.1=0.7\\\\\nP(A|A\\bigcup B)=\\frac{0.5}{0.7}=\\frac{5}{7}\\\\"
d).
"P(A|A\\bigcap B)=\\frac{P(A\\bigcap (A\\bigcap B))}{P(A\\bigcap B)}\\\\\nP(A|A\\bigcap B)=\\frac{P(A\\bigcap B)}{P(A\\bigcap B)}=1\\\\"
e).
"P(A\\bigcap B|A \\bigcup B)=\\frac{P(A\\bigcap B\\bigcap A \\bigcup B)}{P(A \\bigcup B)}\\\\\nP(A\\bigcap B|A \\bigcup B)=\\frac{P(A\\bigcap B)}{P(A \\bigcup B)}\\\\\nP(A\\bigcap B|A \\bigcup B)=\\frac{0.1}{0.7}=\\frac{1}{7}\\\\"
Comments
Leave a comment