) State and prove Wiedemann–Franz law (or) Derive expressions for electrical and thermal conductivities on the basis of classical free electron theory and deduce the value of Lorentz number
The ratio of a metal's thermal conductivity (K) to its electrical conductivity () is proportional to the metal's absolute temperature.
"\\frac{K}{\\sigma} \u221d T \\implies \\frac{K}{\\sigma} =L T"
Using the formulas for electrical and thermal conductivity of metals, we can drive Widemann-Franz's law using classical theory.
The expression for thermal conductivity
"K= \\frac{K_B nv \\lambda}{2}"
The expression for elecetricl conductivity
"\\sigma = \\frac{ne^2 \\tau}{m}"
"\\frac{K}{\\sigma}= \\frac{1\/2 K_B nv \\lambda}{ne^2 \\tau \/ m}"
"\\frac{K}{\\sigma}= \\frac{1}{2} \\frac{mK_B v^2}{e^2 }"
"\\frac{K}{\\sigma}= \\frac{1}{2} mv^2\\frac{K_B}{e^2 }"
We know that kinetic energy s given by
"\\frac{1}{2}mV^2= \\frac{3}{2} K_BT"
"\\frac{K}{\\sigma}= \\frac{3}{2} K_BT\\frac{K_B}{e^2 }"
"\\frac{K}{\\sigma T}= \\frac{3}{2}\\frac{K^2_B}{e^2 }"
"\\frac{K}{\\sigma T}= L"
L is the Lorentz number
As a result, it is demonstrated that the ratio of a metal's thermal and electrical conductivity is proportional to the metal's absolute temperature.
"\\implies L = \\frac{3}{2} \\frac{K_B^2}{e^2}"
"L = \\frac{3}{2} \\frac{(1.38*10^{-23})^2}{2(1.6*10^{-19})^2} = 1.12 * 10^{-8} W \\Omega K^{-2}"
Comments
Leave a comment