Question #204409

A 2000V, 100KW, 9000 rpm series connected DC motor has an armature resistance of 6Ω and a negligible field resistance.


(a) Determine the armature current at the rated load.


(b) Determine the copper loss at the rated load.


(c) Determine the mechanical loss knowing that the no-load armature current is 7 A at a speed of 9000 rpm.


(d) Determine the full load mechanical torque delivered to the load at a speed of 9000 rpm.


(e) Determine the efficiency of the motor.


1
Expert's answer
2021-06-10T03:46:50-0400

a) Armature current ,I2=IL+IshI_2=I_L+I_{sh}

I2=1001032000I_2=\frac{100*10^3}{2000}

=50A=50A

Ish=20006=333.33AI_{sh}=\frac{2000}6=333.33A

Ia=50A+333.33A=383.33AI_a= 50A+333.33A=383.33A

b) Copper loss

p=I2R=333.3326=881651.3334Wp=I^2R=333.33^2*6=881651.3334W

C) Mechanical loss

No load current = 7A and N=9000rpm7A \space and \space N=9000rpm

Power output= power development across the armature

copper losses across the armature

mechanical losses

Power output IfullIa(full)2RaP mechanicalI_{full}-I_{a(full)}^2 R_a- P\space mechanical

P mechanical =VI,fullIa(full)2RaPoutput=VI,_{full}-I_{a(full)}^2 R_a-P _{output}

=[(2000750)383.33]+383.3326100=[(2000-7*50)*383.33]+383.33^2*6-100

1414.1458334W1414.1458334 W

d) 2πN60Tout=Power output\frac{2\pi N}{60}T_{out}= Power \space output

100103=2πN60Tout100*10^3= \frac{2\pi N}{60}T_{out}

Tout=100103602π9000T_{out}=100*10^3* \frac{60}{2 \pi *9000}

=106Nm=106 Nm

η=PoutPin100=1001000141414.8334100=70.71%\eta =\frac{P_{out}}{P_{in}}*100=\frac{100*1000}{141414.8334}*100 =70.71 \%



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS