Question #200611

Find the regular convolution of the following sequences using tabular method:

đ‘„(𝑛)={3 −2 1 4} and ℎ(𝑛)={2 5 3}

↑ ↑


1
Expert's answer
2021-05-31T06:19:05-0400

đ‘„(𝑛)={3 −2 1 4}

Range of x(n)=−3âȘ•nâȘ•0x(n)=-3 \eqslantless n\eqslantless0

∮x[−n]=\therefore x[-n]= {-4 +2 -3 -1}

Range of x(−n)=3âȘ•nâȘ•0x(-n)=3 \eqslantless n\eqslantless0

Conolution of x[n] and x[-n] =y[x]=x[n]*◯ x[-n]=y[x]=x[n] \text{\textcircled * x[-n]}



The range of elements of y[n] will be y[n]Δ−3âȘ•nâȘ•3y[n] \varepsilon -3\eqslantless n \eqslantless3

Hence elements can be calculated from -3 to 3 by summing up diagonals

y[-3]=4

y[-2]=12+-2=10

y[-1]= -8+-6+3=-11

y[0]=16+4+9+1=30

y[1]=-8+-6+3=-11

y[2]=12+-2=10

y[3]=4

y[n]={4,10,-11,30,-11,10,4}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS