Find the regular convolution of the following sequences using tabular method:
π₯(π)={3 β2 1 4} and β(π)={2 5 3}
β β
π₯(π)={3 β2 1 4}
Range of "x(n)=-3 \\eqslantless n\\eqslantless0"
"\\therefore x[-n]=" {-4 +2 -3 -1}
Range of "x(-n)=3 \\eqslantless n\\eqslantless0"
Conolution of x[n] and x[-n] "=y[x]=x[n] \\text{\\textcircled * x[-n]}"
The range of elements of y[n] will be "y[n] \\varepsilon -3\\eqslantless n \\eqslantless3"
Hence elements can be calculated from -3 to 3 by summing up diagonals
y[-3]=4
y[-2]=12+-2=10
y[-1]= -8+-6+3=-11
y[0]=16+4+9+1=30
y[1]=-8+-6+3=-11
y[2]=12+-2=10
y[3]=4
y[n]={4,10,-11,30,-11,10,4}
Comments
Leave a comment