Question #194292

Electronics engineering: FILTERS


Design a 2nd order crossover network with the following specifications:  

  • High Pass cutoff frequency = 3100 Hz
  • Low Pass cutoff frequency = 310 Hz
  • Bandpass frequency = 310Hz to 3100Hz   
1
Expert's answer
2021-05-31T06:39:54-0400

An Op-Amp based bandpass filter is as shown below




The transfer function V0(s)Vin(s)=Z0(s)Zin(s)\frac{V_0(s)}{V_{in}(s)}=-\frac{Z_0(s)}{Z_{in}(s)}

V0(s)Vin(s)=[R2(1+sC2R2)][sc1(1+sC1R1)]=sc1R2(1+sτ1)(1+sτ2)    τ=RC\frac{V_0(s)}{V_{in}(s)}=-[\frac{R_2}{(1+sC_2R_2)}]*[\frac{sc_1}{(1+sC_1R_1)}]=\frac{sc_1R_2}{(1+s \tau_1)(1+s \tau_2)} \implies \tau =RC

The circuit will behave as BPF if τ1>τ2\tau _1> \tau_2

fL=12πR1C1f_L=\frac{1}{2 \pi R_1C_1}

fH=12πR2C2f_H=\frac{1}{2 \pi R_2C_2}

R1=12π31047109=10.924kΩR_1=\frac{1}{2 \pi *310*47*10^{-9}}=10.924k \Omega

Commercial available resistance nearest to calculated R1 is 11kΩ\Omega

    fL=12πR1C1=12π1110347109=307.84Hz\implies f_L=\frac{1}{2 \pi R_1C_1} =\frac{1}{2 \pi 11*10^3*47*10^{-9}} =307.84 Hz

Therefore, R1=11kΩ;C1=47nFR_1=11k \Omega; C_1=47nF

C2=12πR2fH=12π310020103=2.567nFC_2=\frac{1}{2 \pi R_2f_H} =\frac{1}{2 \pi *3100*20*10^3} = 2.567 nF

Commercial available capacitor nearest to calculated C2 is 2.7nF

fH=12πR2C2=12π201032.7109=2947.31Hzf_H=\frac{1}{2 \pi R_2C_2}=\frac{1}{2 \pi*20*10^3*2.7*10^{-9}}=2947.31 Hz

Therefore, R2=20kΩ;C2=2.7nFR_2=20k \Omega; C_2=2.7nF


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS