Answer to Question #193691 in Electrical Engineering for Muskan

Question #193691

Design a three-mode temperature control system which inputs error

in 0-4 V range. The output to final control element is 0-8 V. Given:


Kp = 2.4 % per %

Ki = 9 % (%/min)/ %


5


Kd = 0.7 % / (%/min)


1
Expert's answer
2021-05-31T06:40:12-0400

kp=2.4= 2.4 % will be 100x\frac{100}{x} % =x=1002.4=41.6=x=\frac{100}{2.4}=41.6 %

GP=GP= (100%)(Vout(max)Vout(min)(41.6%)(Vin(max)Vin(min)=(100%)(8V)(41.6%)(4V)=4.8\frac{(100\%)(V_{out(max)}-V_{out(min)}}{(41.6\%)(V_{in(max)-V_{in(min)}}}=\frac{(100\%)(8V)}{(41.6\%)(4V)}=4.8

=KD=0.7=K_D=0.7 %

[0.7%min][60sec1min]=42%%/sec[\frac{0.7}{\%min}][\frac{60sec}{1min]}=42\frac{\%}{\%/sec}

GD=(42%)8v1%sec(4v)=\frac{(42\%)8v}{1\frac{\%}{sec}(4v)}

Now period of fastest expected change=8sec=8sec

R1R1+R3=R3C=0.12π×8sec=0.1273sec\therefore \frac{R_1}{R_1+R_3}=R_3C=\frac{0.1}{2\pi}\times 8sec=0.1273sec

We have the relation , GP=[R2R1+R3]=4.8=[\frac{R_2}{R_1+R_3}]=4.8

GD=R3C=60SecG_D=R_3C=60S ec

R1R1+R3=1%4V=0.004\frac{R_1}{R_1+R_3}=1\%4V=0.004 and C=10μFC=10\mu F

We will have R3=6mΩR3C=60sec andR3=6010=6R_3=6m\Omega \therefore R_3C=60 sec \space and R_3=\frac{60}{10}=6

R1=0.004R1+0.004R3R_1=0.004R_1+0.004R_3

R1=0.004R1=0.004(6Ω)R_1=0.004R_1=0.004(6\Omega)

0.996R1=24k0.996R_1=24k

R1=240.996=24.09kΩR_1=\frac{24}{0.996}=24.09k\Omega

R2R1+R3=4.8\frac{R_2}{R_1+R_3}=4.8

R2=4.8(R1)+4.8R3R_2=4.8(R_1)+4.8R_3

=4.8(24.09)+4.8(6)=4.8(24.09)+4.8(6)

=144.432mΩ=144.432m\Omega



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment