Modulating signal (or) message signal
m ( t ) = 2 c o s ( 4000 π t ) + 5 c o s ( 6000 π t ) m(t)=2cos(4000\pi t)+5cos(6000\pi t) m ( t ) = 2 cos ( 4000 π t ) + 5 cos ( 6000 π t )
C a r r i e r s i g n a l , c ( t ) = 100 c o s ( 2 π f c t ) Carrier\space signal, c(t)=100cos(2\pi f_c t) C a rr i er s i g na l , c ( t ) = 100 cos ( 2 π f c t )
G i v e n f c = 50 k H z Given\space f_c=50k\space Hz G i v e n f c = 50 k Hz
A m 1 = 2 A m 2 = 5 A c = 100 f m 1 = 2 k H z f m 2 = 3 k H z f c = 50 k H z Am_1=2 \space Am_2=5 \space Ac=100 \space fm_1=2kHz \space fm_2=3kHz \space f_c=50kHz A m 1 = 2 A m 2 = 5 A c = 100 f m 1 = 2 k Hz f m 2 = 3 k Hz f c = 50 k Hz
a) Conventional Am
M e s s a g e s i g n a l f o r m m ( t ) = A m c o s ( 2 π f m t ) Message\space signal\space form\space m(t)=Am\space cos(2\pi f_mt) M ess a g e s i g na l f or m m ( t ) = A m cos ( 2 π f m t )
T o t a l m o d u l a t i o n i n d e x μ t = μ 1 2 + μ 2 2 Total\space modulation\space index\space \mu_t=\sqrt{\mu_1^2+\mu_2^2} T o t a l m o d u l a t i o n in d e x μ t = μ 1 2 + μ 2 2
μ 1 = A m 1 A c μ 2 = A m 2 A c \mu_1=\frac{Am_1}{Ac}\space \mu_2=\frac{Am_2}{Ac}\space μ 1 = A c A m 1 μ 2 = A c A m 2
μ 1 = 2 100 μ 2 = 5 100 \mu_1=\frac{2}{100} \space \mu_2=\frac{5}{100} μ 1 = 100 2 μ 2 = 100 5
μ t = ( 0.02 ) 2 + ( 0.05 ) 2 = 0.05 \mu_t=\sqrt{(0.02)^2+(0.05)^2}=0.05 μ t = ( 0.02 ) 2 + ( 0.05 ) 2 = 0.05
Comments