Ladder and wall can be regarded as sides of a right triangle
"At t = 0, OB=0 and OC =BC =15 ft. OB =2t ft"
"sin \\theta=\\frac{OB}{BC} \\implies \\theta = sin^{-1}\\frac{OB}{BC}"
"\\theta = sin^{-1}\\frac{2t}{15} \\implies d\\theta=\\frac{2}{\\sqrt{225-4t^2}}dt"
"\\frac{d\\theta}{dt}=\\frac{2}{\\sqrt{225-4t^2}}"
Determining t, when "\\theta=\\frac{\\pi}{3}"
"sin\\frac{\\pi}{3}=\\frac{2t_1}{15} \\implies t_1= \\frac{15\\sqrt{3}}{4}"
"\\frac{d\\theta}{dt}_{t=t_1}=\\frac{2}{\\sqrt{225-4t^2}}=\\frac{2}{\\sqrt{225-4(\\frac{15 \\sqrt{3}}{4})^2}}"
"=\\frac{2}{\\sqrt{225-225(\\frac{{3}}{4})}}=\\frac{4}{15}" rad/s
Comments
Leave a comment