(a) According to Gauss's law:
"\\int D\\cdot d S=q_{en},\\\\\\space\\\\\nD=\\frac{q_{en}}{4\\pi r^2}=3.82\\cdot10^{-7}\\text{ C\/m}^2."(b) D external to the sphere can be found for a>r:
"D=\\frac{q_{en}}{4\\pi a^2}=9.55\\cdot10^{-10}\/a^2\\text{ C\/m}^2."(c) The energy is
"E=\\frac{1}{2}\\int D\\cdot EdV=\\frac{1}{2}\\int\\epsilon_0E^2dV=\\\\\\space\\\\\n=13\\space\\mu\\text{J}."
Comments
Leave a comment