The system of blocks shown is initially moving with a velocity of 2m/sec. If they acquire a final velocity of 6m/sec after travelling 4m, find weight of block B. Use Work Energy principle.
W=△KE=12mV2f−12mV2i=12mAB∗62−12mAB∗22=18mAB−2mABW=\triangle KE= \frac{1}{2} mV^2f-\frac{1}{2}mV^2i=\frac{1}{2}m_{AB}*6^2-\frac{1}{2}m_{AB}*2^2=18m_{AB}-2m_{AB}W=△KE=21mV2f−21mV2i=21mAB∗62−21mAB∗22=18mAB−2mAB
=16mAB=16(ma+mB)=16m_{AB}=16(m_a+m_B)=16mAB=16(ma+mB)
W=Fd=4∗9.8(mA+mB)W=Fd=4*9.8 (m_A+m_B)W=Fd=4∗9.8(mA+mB)
16mA+16mB=39.24mA+39.24mB16m_A+16m_B=39.24m_A+39.24m_B16mA+16mB=39.24mA+39.24mB
16mA−39.24mA=39.24mB−16mB16m_A-39.24m_A=39.24m_B-16m_B16mA−39.24mA=39.24mB−16mB
−23.24mA=55.24MB-23.24m_A=55.24M_B−23.24mA=55.24MB
mAmB=55.2423.24\frac{m_A}{m_B}=\frac{55.24}{23.24}mBmA=23.2455.24
=mB=23.24=m_B=23.24=mB=23.24
W=mg=23.24∗9.81=2227.9844NW=mg=23.24*9.81=2227.9844NW=mg=23.24∗9.81=2227.9844N
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment