Question #157063

dy/dx + y/x = y3 solve in Bernoulli equation

1
Expert's answer
2021-01-26T02:58:34-0500

dxdy+yx=y\frac{dx}{dy} + \frac{y}{x} = y


1y3.dydx+1y2.1x=1\frac{1}{y^3} . \frac{dy}{dx} + \frac{1}{y^2}. \frac{1}{x} = 1


supposed

1y2=v\frac{1}{y^2} = v 2y3.dydx=dvdx\frac{-2}{y^3}.\frac{dy}{dx}=\frac{dv}{dx}


12.dvdx+vx=1\frac{-1}{2}.\frac{dv}{dx}+ \frac{v}{x}=1 dvdx2x=2\frac{dv}{dx} \frac{-2}{x} = -2


dvdx+\frac{dv}{dx} + ev=Qev =Q for Bernoulli equation , p=p= f(x);Q=f(x)f(x) ; Q= f (x)


Integrating factors I.F = epdxe^{{\intop p dx}}


I.F = e2xdxe^{{\intop \frac{-2}{x}dx}} = e2lnxe^{{-2\ln x}} = elnx(1x2)e^{{\ln x (\frac{1}{x^2}) }} = 1x2\frac{1}{x^2}


1x2\frac{1}{x^2} dvdx\frac{dv}{dx} 2x3.v=2x2\frac{-2}{x^3}.v= \frac{-2}{x^2}


= dvx22dxx3.v=dxx2\frac{dv}{x^2}- \frac{2dx}{x^3}.v =\frac{dx}{x^2}


d(vx2)=dvx2=vx2=x1+c\intop d(\frac{v}{x^2}) = \intop \frac{dv}{x^2} = \frac{v}{x^2} = x ^{{-1}} + c


1y2.1x2=1x+c\frac{1}{y^2}. \frac{1}{x^2} = \frac{-1}{x} + c


1x2y2+1x=c\frac{1}{x^2y^2} + \frac{1}{x} = c








Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS