6) Solve the initial value problem y''-4y=cos 3t ,y(0)=0,y'(0)=1
By Taking Laplace transform to convert t domain into s domain
L(y'') - 4L(y) =L(cos 3t)
s2Y(s)-sy(0)-y'(0)-4Y(s)=(s/s2+32)
Putting y(0)=0 and y'(0)=1 in above equation
s2Y(s)-0-1-4Y(s)= (s/s2+32)
s2Y(s)-1 - 4Y(s)=(s/s2+32)
Y(s)[s2-4]-1= (s/s2+32)
Y(s)[s2-4]= (s/s2+32) + 1
Y(s) = (s/(s2+32)(s2-4)) + 1/(s2-4)
Partial fraction
s/(s2 + 9)(s2-4)= (As+B)/(s2+9) +
Cs+ D/s2-4
s/(s2 + 9)(s2-4)= {(As+B)(s2-4) +
(Cs+ D)(s2+9)}/(s2 + 9)(s2-4)
s=(As+B)(s2-4) + (Cs+ D)(s2+9)
s=As3-4As+Bs2-4B+Cs3+9Cs + Ds2+9D
s=s3(A+C)+s2(B+D)+s(9C-4A)+(9D-4B)
On compairing
A+C=0, B+D=0, 9C-4A=1, 9D-4B=0
A=-C, B=-D, 9C-4(-C)=1
9C+4C=1
13C=1,C=1/13
A=-1/13,. 9D-4B=0,9D-4(-D)=0
9D+4D=0,
13D=0,. D=0, B=-D=0
Y(s)=-(1/13)s/s2+9+(1/13)s/(s2-4) + 1/(s2-4)
Y(s)=-(1/13)s/(s2+9)+(1/13)s/(s2-4) + 1/(s2-4)
Taking Laplace inverse
y(t) = -(1/13)cos3t +(1/13)cosh2t+ 1/4 sinh2t
Comments
Leave a comment