1)Find the Laplace transform of sinh t/t?
L{sinh(tt)}Use the linearity property of Laplace Transform:For functions f(t), g(t) and constants a, b:L{a⋅f(t)+b⋅g(t)}=a⋅L{f(t)}+b⋅L{g(t)}=−L{12e}+L{e2}L{12e}=12es=12es=12esL{e2}=e2s=e2s=e2s=−12es+e2s ⟹ Laplace Transform of sinh(tt):−12es+e2sL\left\{\sinh \left(\frac{t}{t}\right)\right\}\\ \mathrm{Use\:the\:linearity\:property\:of\:Laplace\:Transform:}\\ \mathrm{For\:functions\:}f\left(t\right),\:g\left(t\right)\mathrm{\:and\:constants\:}a,\:b:\quad L\left\{a\cdot f\left(t\right)+b\cdot g\left(t\right)\right\}=a\cdot L\left\{f\left(t\right)\right\}+b\cdot L\left\{g\left(t\right)\right\}\\ =-L\left\{\frac{1}{2e}\right\}+L\left\{\frac{e}{2}\right\}\\ L\left\{\frac{1}{2e}\right\}=\frac{\frac{1}{2e}}{s}\\ =\frac{\frac{1}{2e}}{s}\\ =\frac{1}{2es}\\ L\left\{\frac{e}{2}\right\}=\frac{\frac{e}{2}}{s}\\ =\frac{\frac{e}{2}}{s}\\ =\frac{e}{2s}\\ =-\frac{1}{2es}+\frac{e}{2s}\\ \implies \mathrm{Laplace\:Transform\:of\:}\sinh \left(\frac{t}{t}\right):\quad -\frac{1}{2es}+\frac{e}{2s}L{sinh(tt)}UsethelinearitypropertyofLaplaceTransform:Forfunctionsf(t),g(t)andconstantsa,b:L{a⋅f(t)+b⋅g(t)}=a⋅L{f(t)}+b⋅L{g(t)}=−L{2e1}+L{2e}L{2e1}=s2e1=s2e1=2es1L{2e}=s2e=s2e=2se=−2es1+2se⟹LaplaceTransformofsinh(tt):−2es1+2se
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments