Solve ∫y=0 ^ 1 ∫x=y^ 2 ^ 1∫z=0 ^ 1-x x dzdxdy
∫y=01∫x=y21∫z=01−xxdzdxdy=x(−x+1)=∫01∫y21x(−x+1)dxdy=∫01(1−y42−1−y63)dy=435\int_{y=0}^1 ∫_{x=y^ 2} ^ 1∫_{z=0} ^ {1-x} x dzdxdy\\ =x\left(-x+1\right)\\ =\int _0^1\int _{y^2}^1x\left(-x+1\right)dxdy\\ =\int _0^1\left(\frac{1-y^4}{2}-\frac{1-y^6}{3}\right)dy\\ =\frac{4}{35}∫y=01∫x=y21∫z=01−xxdzdxdy=x(−x+1)=∫01∫y21x(−x+1)dxdy=∫01(21−y4−31−y6)dy=354
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments