Question #223860

Find the integral surface of x(y^2+z)p-y( x^2+z)q=(x^2-y^2)z through the straight through the x+y = 0,z = 1.


1
Expert's answer
2021-08-23T04:49:20-0400

x(y2+z)py(x2+z)q=(x2y2)z.............(1)x(y^2+z)p-y( x^2+z)q=(x^2-y^2)z.............(1)

Lagrange’s auxiliary equations of are

dxx(y2+z)=dyy(x2+z)=dz(x2y2)z\frac{dx}{x(y^2+z)}=\frac{dy}{-y( x^2+z)}=\frac{dz}{(x^2-y^2)z}

thus, the solution is the system of equations:

{xyz=c1x2+y22z=c2\begin{cases} xyz=c_1 \\ x^2+y^2-2z=c_2 \end{cases}

Taking as a parameter, the given equation of the dtraight line x+y=0;z=1x+y=0; z=1 can be put in parametric form x=t,y=t;z=1x=t,y=-t; z=1 .

Using this,

{xyz=c1x2+y22z=c2\begin{cases} xyz=c_1 \\ x^2+y^2-2z=c_2 \end{cases}

may be re-written as

{t2=c12t22=c2\begin{cases} -t^2=c_1 \\ 2t^2-2=c_2 \end{cases}

Eliminating from the equations , we have

{2(c1)2=c22c1+c2+2=0\begin{cases} 2(-c_1)-2=c_2 \\ 2c_1+c_2+2=0 \end{cases}

Putting values of and, the desired integral surface is

2xyz+x2+y22z+2=02xyz+x^2+y^2-2z+2=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS