Given utility function U= where PX = 12 Birr, Birr, PY = 4 Birr and the income of the consumer is, M= 240 Birr. A. Find the utility maximizing combinations of X and Y. B. Calculate marginal rate of substitution of X for Y (MRSX,Y) at equilibrium and interpret your result
"U= X^{0.5}Y^{0.5}"
"MU_x\u200b=0.5\\frac{Y^{0.5}}{X^{0.5\u200b}}"
"MU_y=0.5 \\frac {X^{0.5}}{y^{0.5}}"
"{\\frac{MU_x}{p_x}}=\\frac {MU_y}{p_y}"
"\\frac{Y}{X}= \\frac{12}{4}"
"P_xX+ p_yY=M"
y= 3x
"X= \\frac{1}{3}Y"
Plug into the below equation;
12X+4Y=240
x=10, y=30
b)
"\\frac {\\partial U}{\\partial x \\partial y} =\\frac {0.25} {(xy)^{0.5}}"
"MRS x.y = \\frac {\\partial U} {\\partial x \\partial y} = \\frac {0.25}{(10 \\times 30)^{0.5}}=0.015"
Comments
Leave a comment