Find the Profit Maximizing output and total profit from the information
Demand Function :Q=20-0.4P and
Cost function:TC (C) =25+Q+0.2Q²
At optimal point, marginal revenue is equal to marginal cost.
MR=MC;
"Revenue=Price\\times Demand"
"Revenue=(50-2.5Q)\\times Q=50Q-2.5Q ^2"
"MR=50-5Q"
Cost function
C=25+Q+0.2Q²; MC=1+0.4Q
So, equate MC and MR to find optimal quantity and price.
MC=MR; 1+0.4Q="50-5Q"
5.4 Q=49; Q=9.07 units
But Price =50-2.5Q=50-22.67=27.31
Profit = Revenue- Cost
"Profit=(50Q-2.5Q ^2)-(25+0.2Q ^2+Q);"
"Profit=(50\\times9.07-2.5\\times9.07 ^2)-(25+0.2\\times9.07 ^2+9.07)=197.3"
Optimal quantity=9.07 units
Optimal price=27.31
Optimal profit=197.3.
Comments
Leave a comment