Question #298605

Assuming the about run cost function of a firm is given by:TC=4Q3+3Q2+10Q+30.

a)find the expression of TFC and TVC.

b) derive the expression of AFC,AVC,AC and MC.

c) find the levels of output that minimize MC and AVC.

d) find the minimum values of MC and AVC


1
Expert's answer
2022-02-20T16:24:22-0500

a).i) Expression of T FC will be ; =30

ii)Expression of TVC will be; 4Q3+3Q2+10Q


b)(i) MC=changeinTCchangeinQ\frac{change in TC}{change in Q} =MC=dTCdQ\frac{dTC}{dQ} =12Q2+6Q=10

(ii)AVC=Q=Fl

TC=FC+VC=FC=WL

AVC IS \therefore VCQ\frac{VC}{Q} =4Q3+3Q2+10QQ\frac{4Q^3+3Q^2+10Q}{Q} =4Q2+3Q+10

(iii)AFC=TC-AVC=FCQ\frac{FC}{Q} =30Q\frac{30}{Q}

(IV)AC=AFC+AVC

30Q\frac{30}{Q} +4Q2+3Q+10=30+4Q3+3Q2+10Q

iv)Expression of AVC will be;VCQ\frac{VC}{Q} =4Q3Q\frac {4Q^3}{Q} +3Q2Q\frac {3Q^2}{Q} +10QQ\frac{10Q}{Q} =4Q2+3Q+10

(c). level of minimizing MC=dMCdQ\frac{dMC}{dQ} =24Q+6

finding the value of Q= -624\frac{6}{24} =-14\frac{1}{4}


level of minimizing AVC =dAVCdQ\frac{dAVC}{dQ} =8Q+3

Q=38-\frac{3}{8}

(d).finding the minimum values of MC and AVC

minimum value of MC=dMCdQ\frac{dMC}{dQ} =0

    \implies 24Q+6=0

\therefore Q=624-\frac{6}{24} =18-\frac{1}{8} thus output of MC is minimum at this point.


minimum value of AVC=dAVCdQ\frac{dAVC}{dQ} =0

    \implies8Q+3=0

\therefore Q=38-\frac{3}{8} thus output of AVC is minimum at this point.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS