Question #296523

The prices of inputs K and L are given as $12 per unit and $3 per unit respectively, and a firm operates with the production function

Q=25 K ^0.5 L^0.5

Q=25K0.5L0.5

.

(i) What is the minimum cost of producing 1,250 units of output?


1
Expert's answer
2022-02-13T12:11:23-0500

Q=25K0.5L0.5Q= 25K^{0.5}L^{0.5}

MPK=25×0.5K0.5L0.5MPK= 25\times 0.5K^{-0.5}L^{0.5}

=12.5K0.5L0.5= 12.5K^{-0.5}L^{0.5}


MPL=25×0.5K0.5L0.5MPL= 25\times 0.5K^{0.5}L^{-0.5}


=12.5K0.5L0.5= 12.5K^{0.5}L^{-0.5}


MPLMPK=wr\frac{MPL}{MPK}=\frac{w}{r}


12.5K0.5L0.512.5K0.5L0.5=312\frac{12.5K^{0.5}L^{-0.5} }{12.5K^{-0.5}L^{0.5}}=\frac{3}{12}


KL=312\frac{K}{L}=\frac{3}{12}


L= 4K

K= 14L\frac{1}{4}L = 0.25L

Plug values the above in the production function

1250=25(0.25L0.5)L0.251250= 25(0.25L^{0.5})L^{0.25}

1250= 31.25L

L= 40

1250= 25K0.54K0.5^{0.5}4K^{0.5}

1250= 100K

K= 12.5


TC= wL+rK

= (40×3)+(12×12.5)=270(40\times3)+(12\times12.5)= 270



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS