The prices of inputs K and L are given as $12 per unit and $3 per unit respectively, and a firm operates with the production function
Q=25 K ^0.5 L^0.5
Q=25K0.5L0.5
.
(i) What is the minimum cost of producing 1,250 units of output?
"Q= 25K^{0.5}L^{0.5}"
"MPK= 25\\times 0.5K^{-0.5}L^{0.5}"
"= 12.5K^{-0.5}L^{0.5}"
"MPL= 25\\times 0.5K^{0.5}L^{-0.5}"
"= 12.5K^{0.5}L^{-0.5}"
"\\frac{MPL}{MPK}=\\frac{w}{r}"
"\\frac{12.5K^{0.5}L^{-0.5} }{12.5K^{-0.5}L^{0.5}}=\\frac{3}{12}"
"\\frac{K}{L}=\\frac{3}{12}"
L= 4K
K= "\\frac{1}{4}L" = 0.25L
Plug values the above in the production function
"1250= 25(0.25L^{0.5})L^{0.25}"
1250= 31.25L
L= 40
1250= 25K"^{0.5}4K^{0.5}"
1250= 100K
K= 12.5
TC= wL+rK
= "(40\\times3)+(12\\times12.5)= 270"
Comments
Leave a comment