i.
y'=(x2-6x+9'=2x-6
y''=(2x-6)''=2
2x-6=0
x=3
The second derivative does not contain x , so insertion gives 2. 2 is larger than 0. So there is a mimimum at 3.
y(3)=32−6×3+9=9−18+9=0
Minimum turning point (3;0).
ii. y(x):
x2+5xz=y−z2
x2+5xz+(25z)2=(25z)2+y−z2
solution set
x1=2−5z+(y−z2+425z2)0.5
x2=2−5z−(y−z2+425z2)0.5
y(z)
z2+5xz=−x2+y
z2+5xz+(25x)2=(25x)2+y−x2
x1=2−5x+(y−x2+425x2)0.5
x2=2−5x−(y−x2+425x2)0.5
iii.
y(x)
z2+v2=y−x2
z2=y−x2−v2
z=+−(y−x2−v2)0.5
y(z)
z2+x2=y−v2
x2=y−z2−v2
x=+−(y−z2−v2)0.5
y(v)
z2+v2=y−x2
v2=y−z2−x2
v=+−(y−z2−x2)0.5
Comments
Leave a comment