Answer to Question #293781 in Microeconomics for Agyei Prince

Question #293781

Find the turning point and dertemine whether they are Maxima or minima.


i.y=x2-6x+9


ii.y=x2+5xz+z2


iii.y=x2+z2+v2

1
Expert's answer
2022-02-08T15:10:54-0500

i.

y'=(x2-6x+9'=2x-6

y''=(2x-6)''=2

2x-6=0

x=3

The second derivative does not contain x , so insertion gives 2. 2 is larger than 0. So there is a mimimum at 3.

y(3)=326×3+9=918+9=0y(3)=3^2-6\times3+9=9-18+9=0

Minimum turning point (3;0).


ii. y(x):

x2+5xz=yz2x^2+5xz=y-z^2

x2+5xz+(5z2)2=(5z2)2+yz2x^2+5xz+(\frac{5z}{2})^2=(\frac{5z}{2})^2+y-z^2


solution set


x1=5z2+(yz2+25z24)0.5x1=\frac{-5z}{2}+(y-z^2+\frac{25z^2}{4})^{0.5}

x2=5z2(yz2+25z24)0.5x2=\frac{-5z}{2}-(y-z^2+\frac{25z^2}{4})^{0.5}


  y(z)

z2+5xz=x2+yz^2+5xz=-x^2+y


z2+5xz+(5x2)2=(5x2)2+yx2z^2+5xz+(\frac{5x}{2})^2=(\frac{5x}{2})^2+y-x^2


x1=5x2+(yx2+25x24)0.5x1=\frac{-5x}{2}+(y-x^2+\frac{25x^2}{4})^{0.5}


x2=5x2(yx2+25x24)0.5x2=\frac{-5x}{2}-(y-x^2+\frac{25x^2}{4})^{0.5}


iii.


y(x)


z2+v2=yx2z^2+v^2=y-x^2


z2=yx2v2z^2=y-x^2-v^2


z=+(yx2v2)0.5z=+-(y-x^2-v^2)^{0.5}


y(z)



z2+x2=yv2z^2+x^2=y-v^2


x2=yz2v2x^2=y-z^2-v^2


x=+(yz2v2)0.5x=+-(y-z^2-v^2)^{0.5}


y(v)

z2+v2=yx2z^2+v^2=y-x^2


v2=yz2x2v^2=y-z^2-x^2


v=+(yz2x2)0.5v=+-(y-z^2-x^2)^{0.5}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment