1.Suppose a consumer consuming two commodities X and Y has the following utility function TU= X0.5 Y0.5. If price of good X and Y are 2 and 3 respectively and income constraint is Birr 60.
A. Formulate the budget equation
B. Find the MRSXY at optimum.
C. Find the quantities of good X and Y which will maximize utility
"P_x= 2"
"P_y= 3"
I= 60
a) Budget Eqn
2X+ 3Y= 60
b) MRS"_{xy}= \\frac{Mu_x}{Mu_y}"
"Mu_x= 0.5X^{-0.5}Y^{0.5}"
"Mu_y= 0.5 X^{0.5}Y^{-0.5}"
MRS"_{xy}= \\frac{ 0.5X^{-0.5}Y^{0.5}}{0.5 X^{0.5}Y^{-0.5}}"
"= \\frac{ 0.5Y^{0.5}Y^{0.5}}{0.5 X^{0.5}X^{0.5}}= \\frac{Y}{X}"
c) Quantities that maximize utility
"\\frac{Mu_x}{Mu_y}=\\frac {P_x}{P_y}"
"\\frac{Y}{X}=\\frac {2}{3}"
3Y= 2X
"X= \\frac{3}{2}Y"
"Y= \\frac{2}{3}X"
Plug into the budget equation
2("\\frac{3}{2}Y)+ 3Y= 60"
6Y= 60
Y"^*= 10"
"3(\\frac{2}{3}X)+ 2X= 60"
4X= 60
X"^*= 15"
Comments
Leave a comment