Question #293712

1.Suppose a consumer consuming two commodities X and Y has the following utility function TU= X0.5 Y0.5. If price of good X and Y are 2 and 3 respectively and income constraint is Birr 60.


A. Formulate the budget equation


B. Find the MRSXY at optimum.


C. Find the quantities of good X and Y which will maximize utility

1
Expert's answer
2022-02-04T06:37:02-0500

Px=2P_x= 2

Py=3P_y= 3

I= 60

a) Budget Eqn

2X+ 3Y= 60


b) MRSxy=MuxMuy_{xy}= \frac{Mu_x}{Mu_y}

Mux=0.5X0.5Y0.5Mu_x= 0.5X^{-0.5}Y^{0.5}


Muy=0.5X0.5Y0.5Mu_y= 0.5 X^{0.5}Y^{-0.5}


MRSxy=0.5X0.5Y0.50.5X0.5Y0.5_{xy}= \frac{ 0.5X^{-0.5}Y^{0.5}}{0.5 X^{0.5}Y^{-0.5}}


=0.5Y0.5Y0.50.5X0.5X0.5=YX= \frac{ 0.5Y^{0.5}Y^{0.5}}{0.5 X^{0.5}X^{0.5}}= \frac{Y}{X}

c) Quantities that maximize utility


MuxMuy=PxPy\frac{Mu_x}{Mu_y}=\frac {P_x}{P_y}


YX=23\frac{Y}{X}=\frac {2}{3}

3Y= 2X

X=32YX= \frac{3}{2}Y


Y=23XY= \frac{2}{3}X

Plug into the budget equation

2(32Y)+3Y=60\frac{3}{2}Y)+ 3Y= 60


6Y= 60

Y=10^*= 10


3(23X)+2X=603(\frac{2}{3}X)+ 2X= 60

4X= 60

X=15^*= 15


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS