Question #291741

Suppose that a consumer consumes two goods X and Y and derives utility according the following utility function where U = 25X2/5Y 3/5 where α = 2/5 and β = 3/5 a. If Px is the price of good X and Py is the price of good Y and the consumer’s income is M. Derive the demand functions for the two goods X and Y b. If Px is shs 15 and Py is shs 10 and the consumer has shs.800 to spend on the two goods what are the optimal quantities of X and Y that maximize the consumer’s utility? c. Using the information in b above show that the values of α and β represent the proportion of the consumer’s income spent on good X and good Y respectively


1
Expert's answer
2022-02-01T06:55:35-0500

U=25X25Y35U= 25X^\frac{2}{5}Y^\frac{3}{5}

α=25\alpha= \frac{2}{5}

β=35\beta= \frac{3}{5}

a) Demand functions

Budget = PxX+PyY=mP_xX+ P_yY= m

MuxMuy=pxPy\frac{Mu_x}{Mu_y}= \frac{p_x}{P_y}

Mux=10X35Y35Mu_x= 10X^\frac{-3}{5}Y\frac{3}{5}


Muy=15X25Y25Mu_y= 15X^\frac{2}{5}Y\frac{-2}{5}

10X35Y3515X25Y25=PxPy\frac{10X^\frac{-3}{5}Y\frac{3}{5}}{15X^\frac{2}{5}Y\frac{-2}{5}}= \frac{P_x}{P_y}


10Y15X=PxPy\frac{10Y}{15X}= \frac{P_x}{P_y}


15PxX=10PyY15P_xX=10P_yY


X=0.67PyYPxX= \frac{0.67P_yY}{P_x}

Y=1.5PxXPyY= \frac{1.5P_xX}{P_y}


Plug into the budget Equation

PxX+PyY=mP_xX+P_yY=m


Px(0.67PyYPx)+PyY=mP_x(\frac{0.67P_yY}{P_x})+P_yY=m


0.67PyY+PyY=m0.67P_yY+P_yY=m


23Py+PyY=m\frac{2}{3}P_y+P_yY=m

5Py=3m5P_y= 3m


Y=3m5PyY^*= \frac{3m}{5P_y}

PxX+Py(1.5PxXPy)=mP_xX+P_y(\frac{1.5P_xX}{P_y})=m

2.5PxX=m2.5P_xX=m


X=m2.5PxX^*= \frac{m}{2.5P_x}


=m52Px= \frac{m} {\frac{5}{2}P_x}


X=2m5PxX^*= \frac{2m}{5P_x}

b) Optimal Quantities


Y=3m5Py=3×8005×10Y^*= \frac{3m}{5P_y}= \frac{3\times800}{5\times10}


=240050=48=\frac{2400}{50}= 48


X=m2.5Px=8002.5×5=64X^*= \frac{m}{2.5P_x}= \frac{800}{2.5\times 5}= 64


Amount spend on good X=64×5=32064\times5=320

Amount spend on good Y=48×10=48048\times 10= 480

Proportion on X= 320800=0.4=α\frac{320}{800}=0.4=\alpha


Proportion on Y= 480800=0.6=β\frac{480}{800}=0.6=\beta







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS