Question #291730

Suppose the demand function for a firm’s product is given by 𝐿𝑛 𝑄π‘₯ 𝑑 = 7 βˆ’ 1.5𝐿𝑛𝑃π‘₯ + 2𝐿𝑛𝑃𝑦 βˆ’ 0.5𝐿𝑛𝑀 + 𝐿𝑛𝐴 Where Px = $15, Py = $6, M = $40,000, and A =$350. a. Determine the own price elasticity of demand, and state whether demand is elastic, inelastic, or unitary elastic. (3mks) b. Determine the cross-price elasticity of demand between good X and good Y, and state whether these two goods are substitutes or complements. (3mks) c. Determine the income elasticity of demand, and state whether good X is a normal or inferior good. (3mks) d. Determine the own advertising elasticity of demand. (3mks


1
Expert's answer
2022-01-31T09:57:20-0500

lnQxd=7βˆ’1.5lnPx+2lnPyβˆ’0.5lnM+lnAlnQ_xd=7-1.5lnP_x+2lnP_y-0.5lnM+lnA

Px=P_x= $1515 , Py=P_y= $66 , M=40000,A=M=40000, A= $350350

lnQ=7βˆ’1.5ln(15)+2ln(6)βˆ’0.5ln(40000)+ln(350)lnQ=7-1.5ln(15)+2ln(6)-0.5ln(40000)+ln(350)

lnQ=7βˆ’4.0624+3.5835βˆ’5.2983+5.8579lnQ=7-4.0624+3.5835-5.2983+5.8579

lnQ=7.0811lnQ=7.0811

Q=e7.0811=1189.276Q=e^{7.0811}=1189.276

a)Ep=dQdPΓ—PQ=βˆ’1.5Γ—3501189.276=βˆ’0.441,inelasticE_p=\frac{dQ}{dP}\times \frac{P}{Q}=-1.5\times\frac{350}{1189.276}=-0.441, inelasticdemanddemand

b)Ecpx=E_cpx= dQdPXΓ—PXQ,PX=\frac{dQ}{dP_X}\times \frac{P_X}{Q}, P_X=$1515

=βˆ’1.5Γ—151189.276=βˆ’0.0189=-1.5\times\frac{15}{1189.276}=-0.0189

Ecpx=dQdPYΓ—PYQ,PY=E_cpx=\frac{dQ}{dP_Y}\times \frac{P_Y}{Q},P_Y= $66

=2Γ—61189.276=0.01=2\times\frac{6}{1189.276}=0.01

X and Y are substitutes.

c)EI=dQdIΓ—IX=0.5Γ—4000015=βˆ’1.333E_I=\frac{dQ}{dI}\times \frac{I}{X}=0.5\times \frac{40000}{15}=-1.333

X is an inferior good.

d) AED=dQdAΓ—AQ=1Γ—3501189.276=0.29AED=\frac{dQ}{dA}\times \frac{A}{Q}=1\times\frac{350}{1189.276}=0.29


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS