Question #290244

consumer has money income of USD 400 and consumes x and y with price of x and y are equals 2 and 5 respectively . U=X^1/3 Y^2/3

A) Calculate the demand function for x and y

B) calculate the utility maximize levels of x and y

C) compute the maximize utility that consumer drive from consumption of x and y


1
Expert's answer
2022-01-29T11:06:26-0500

Solution:

A.). Demand function for X:

MUxMUy=PxPy\frac{MUx}{MUy} = \frac{Px}{Py}


YPx=XPy\frac{Y}{Px} = \frac{X}{Py}


Y = PxPyX\frac{Px}{Py}X

M = PxX + PyY

M = PxX + Py(PxPyX\frac{Px}{Py}X)

M = PxX + PxX

M = 2PxX

X = M2Px\frac{M}{2Px}

 

Demand function for Y:

MUxMUy=PxPy\frac{MUx}{MUy} = \frac{Px}{Py}


YPx=XPy\frac{Y}{Px} = \frac{X}{Py}

X = PyPxY\frac{Py}{Px}Y

M = PxX + PyY

M = Px(PyPxY\frac{Py}{Px}Y) +PxX

M = PyY + PyY

M = 2PyY

Y = M2Py\frac{M}{2Py}

 

B.). Derive MRSXY = MUxMUy=PxPy\frac{MUx}{MUy} = \frac{Px}{Py}

U= X1/3Y2/3

MUx = UX=13X23Y23\frac{\partial U} {\partial X} = \frac{1} {3}X^{-\frac{2}{3} } Y ^{\frac{2}{3}}


MUy = UX=23X13Y13\frac{\partial U} {\partial X} = \frac{2} {3}X^{\frac{1}{3} } Y ^{-\frac{1}{3}}

 

Set MUxMUy=PxPy\frac{MUx}{MUy} = \frac{Px}{Py}


13\frac{1} {3}X-2/3Y2/3 ÷\div 23\frac{2} {3}X1/3Y-1/3= 25\frac{2} {5}


X = 1.23Y

Budget constraint: M = PxX + PyY

400 = 2X + 5Y

Substitute the value of X in budget constraint to derive Y:

400 = 2(1.23Y) + 5Y = 2.46Y + 5Y = 7.46Y

Y = 53.6

X = 1.23Y = 1.23(53.6) = 65.9

The quantities of X and Y which maximize utility (Uxy) = (65.9, 53.6)

 

C.). Maximum Utility:

 

U= X1/3Y2/3

U = 65.91/353.62/3

U = 57.4

Maximum Utility that the consumer can derive from x and y = 57.4


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS