consumer has money income of USD 400 and consumes x and y with price of x and y are equals 2 and 5 respectively . U=X^1/3 Y^2/3
A) Calculate the demand function for x and y
B) calculate the utility maximize levels of x and y
C) compute the maximize utility that consumer drive from consumption of x and y
Solution:
A.). Demand function for X:
"\\frac{MUx}{MUy} = \\frac{Px}{Py}"
"\\frac{Y}{Px} = \\frac{X}{Py}"
Y = "\\frac{Px}{Py}X"
M = PxX + PyY
M = PxX + Py("\\frac{Px}{Py}X")
M = PxX + PxX
M = 2PxX
X = "\\frac{M}{2Px}"
Demand function for Y:
"\\frac{MUx}{MUy} = \\frac{Px}{Py}"
"\\frac{Y}{Px} = \\frac{X}{Py}"
X = "\\frac{Py}{Px}Y"
M = PxX + PyY
M = Px("\\frac{Py}{Px}Y") +PxX
M = PyY + PyY
M = 2PyY
Y = "\\frac{M}{2Py}"
B.). Derive MRSXY = "\\frac{MUx}{MUy} = \\frac{Px}{Py}"
U= X1/3Y2/3
MUx = "\\frac{\\partial U} {\\partial X} = \\frac{1} {3}X^{-\\frac{2}{3} } Y ^{\\frac{2}{3}}"
MUy = "\\frac{\\partial U} {\\partial X} = \\frac{2} {3}X^{\\frac{1}{3} } Y ^{-\\frac{1}{3}}"
Set "\\frac{MUx}{MUy} = \\frac{Px}{Py}"
"\\frac{1} {3}"X-2/3Y2/3 "\\div" "\\frac{2} {3}"X1/3Y-1/3= "\\frac{2} {5}"
X = 1.23Y
Budget constraint: M = PxX + PyY
400 = 2X + 5Y
Substitute the value of X in budget constraint to derive Y:
400 = 2(1.23Y) + 5Y = 2.46Y + 5Y = 7.46Y
Y = 53.6
X = 1.23Y = 1.23(53.6) = 65.9
The quantities of X and Y which maximize utility (Uxy) = (65.9, 53.6)
C.). Maximum Utility:
U= X1/3Y2/3
U = 65.91/353.62/3
U = 57.4
Maximum Utility that the consumer can derive from x and y = 57.4
Comments
Leave a comment