Given the matrix X=[2426],we need to calculate M=[I2−X(XTX)−1XT],where I2is the 2×2 identity matrix.Now,M=[I2−X(XTX)−1XT]=[I2−X(X−1(XT)−1)XT],since (AB)−1=B−1A−1,∀ invertible matrix A and B.=[I2−X(X−1(XT)−1XT)]=[I2−X(X−1)I2]=[I2−I2]=02,where 02 is the 2×2 zero matrix.Thus, M=[0000]Next, to show that M is idempotent we need to show that M2=M.M2=[0000]×[0000]=[0000]=M
Comments