Using the matrix X = [2,2,2,2,4,6] Calculate M = ( I2 - X(XT X) "-1" XT ) and show that M is an idempotent matrix (Do not convert fractions into decimal numbers). in Assignment Expert
"\\text{Given the matrix }X=\\begin{bmatrix}\n 2 & 2 \\\\\n 4 & 6\n\\end{bmatrix}, \\text{we need to calculate }M=[I_2-X(X^TX)^{-1}X^T], \\text{where } I_2\\\\\n\\text{is the } 2\\times 2\\text{ identity matrix.}\\\\\n\\text{Now,}\\\\\nM=[I_2-X(X^TX)^{-1}X^T]\\\\\n\\quad=[I_2-X(X^{-1}(X^T)^{-1})X^T], \\text{since }(AB)^{-1}=B^{-1}A^{-1}, \\forall \n\\text{ invertible matrix A and B.}\\\\\n\\quad=[I_2-X(X^{-1}(X^T)^{-1}X^T)]=[I_2-X(X^{-1})I_2]\\\\\n\\quad=[I_2-I_2]=0_2, \\text{where }0_2 \\text{ is the }2\\times 2\\text{ zero matrix.}\\\\\n\\text{Thus, }\\\\\nM=\\begin{bmatrix}\n 0 & 0 \\\\\n 0 & 0\n\\end{bmatrix}\\\\\n\\quad\\\\\n\\quad\\\\\n\\text{Next, to show that M is idempotent we need to show that }M^2=M.\\\\\nM^2=\\begin{bmatrix}\n 0 & 0 \\\\\n 0 & 0\n\\end{bmatrix}\\times\\begin{bmatrix}\n 0 & 0 \\\\\n 0 & 0\n\\end{bmatrix}=\\begin{bmatrix}\n 0 & 0 \\\\\n 0 & 0\n\\end{bmatrix}=M"
Comments
Leave a comment