Question #290176

Using the matrix X = [2,2,2,2,4,6] Calculate M = ( I2 - X(XT X) "-1" XT ) and show that M is an idempotent matrix (Do not convert fractions into decimal numbers). in Assignment Expert


1
Expert's answer
2022-01-24T11:04:58-0500

Given the matrix X=[2246],we need to calculate M=[I2X(XTX)1XT],where I2is the 2×2 identity matrix.Now,M=[I2X(XTX)1XT]=[I2X(X1(XT)1)XT],since (AB)1=B1A1, invertible matrix A and B.=[I2X(X1(XT)1XT)]=[I2X(X1)I2]=[I2I2]=02,where 02 is the 2×2 zero matrix.Thus, M=[0000]Next, to show that M is idempotent we need to show that M2=M.M2=[0000]×[0000]=[0000]=M\text{Given the matrix }X=\begin{bmatrix} 2 & 2 \\ 4 & 6 \end{bmatrix}, \text{we need to calculate }M=[I_2-X(X^TX)^{-1}X^T], \text{where } I_2\\ \text{is the } 2\times 2\text{ identity matrix.}\\ \text{Now,}\\ M=[I_2-X(X^TX)^{-1}X^T]\\ \quad=[I_2-X(X^{-1}(X^T)^{-1})X^T], \text{since }(AB)^{-1}=B^{-1}A^{-1}, \forall \text{ invertible matrix A and B.}\\ \quad=[I_2-X(X^{-1}(X^T)^{-1}X^T)]=[I_2-X(X^{-1})I_2]\\ \quad=[I_2-I_2]=0_2, \text{where }0_2 \text{ is the }2\times 2\text{ zero matrix.}\\ \text{Thus, }\\ M=\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}\\ \quad\\ \quad\\ \text{Next, to show that M is idempotent we need to show that }M^2=M.\\ M^2=\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}\times\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}=\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}=M


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS