A sample of 20 observations corresponding to the regression model
Y i =α + βX i + U i gave the following data.
∑y = 21.9
∑x = 186.2
∑ (x− ¯ x)(y− ¯ y) = 106.2
∑ (y− ¯ y) 2= 86.9
∑ (x − ¯ x) 2= 215.4
(a) Estimate α and β
(b) Calculate the variance of our estimates
We have,
"n=20\\\\\\bar x={\\sum x\\over n}={186.2\\over20}=9.31\\\\\\bar y={\\sum y\\over n}={21.9\\over20}=1.095"
Let,
"S_{xy}=\\sum (x\u2212 \\bar x)(y\u2212 \\bar y)=106.2\\\\ S_{xx}=\\sum (x \u2212 \\bar x) ^2=215.4\\\\ S_{yy}=\\sum (y\u2212 \\bar y)^ 2=86.9"
The values of the Ordinary Least Squares Estimates are given by,
"\\hat\\beta={S_{xy} \\over S_{xx}}={106.2\\over215.4}=0.4930"
and,
"\\hat\\alpha= \\bar y-(\\bar x\\times \\hat \\beta)=1.095-(9.31\\times0.4930)=1.095-4.5902=-3.4952"
Therefore, the values of "\\hat\\alpha=-3.4952" and "\\hat\\beta=0.4930" both rounded off to 4 decimal places.
The variance of these estimates are derived using the formulas below.
"var(\\hat \\beta)={s^2\\over S_{xx}}" where "s^2" is the sample variance. We use the sample variance "s^2"since the population variance is unknown. "s^2" given by,
"s^2={S_{yy}-\\hat \\beta \\times S_{xy}\\over n-2}={86.9-(0.4930\\times 106.2)\\over 20-2}={34.5395\\over18}=1.9189"(4dp)
Therefore,
"var(\\hat\\beta)={1.9189\\over 215.4}=0.00891"(5dp)
and
"var(\\hat\\alpha)=({1\\over n}+{\\bar x^2\\over S_{xx}})\\times s^2=({1\\over 20}+{9.31^2\\over 215.4})\\times 1.9189=0.8681" (4dp)
Comments
It is best and clear response thank you but from where we get a sample variance
thanks
thank you so much for your support.
Leave a comment