Answer to Question #289502 in Microeconomics for ermi

Question #289502

A sample of 20 observations corresponding to the regression model

Y i =α + βX i + U i gave the following data.

∑y = 21.9

∑x = 186.2

∑ (x− ¯ x)(y− ¯ y) = 106.2

∑ (y− ¯ y) 2= 86.9

∑ (x − ¯ x) 2= 215.4

(a) Estimate α and β

(b) Calculate the variance of our estimates


1
Expert's answer
2022-01-23T15:41:03-0500

We have,

n=20xˉ=xn=186.220=9.31yˉ=yn=21.920=1.095n=20\\\bar x={\sum x\over n}={186.2\over20}=9.31\\\bar y={\sum y\over n}={21.9\over20}=1.095

Let,

Sxy=(xxˉ)(yyˉ)=106.2Sxx=(xxˉ)2=215.4Syy=(yyˉ)2=86.9S_{xy}=\sum (x− \bar x)(y− \bar y)=106.2\\ S_{xx}=\sum (x − \bar x) ^2=215.4\\ S_{yy}=\sum (y− \bar y)^ 2=86.9

The values of the Ordinary Least Squares Estimates are given by,

β^=SxySxx=106.2215.4=0.4930\hat\beta={S_{xy} \over S_{xx}}={106.2\over215.4}=0.4930

and,

α^=yˉ(xˉ×β^)=1.095(9.31×0.4930)=1.0954.5902=3.4952\hat\alpha= \bar y-(\bar x\times \hat \beta)=1.095-(9.31\times0.4930)=1.095-4.5902=-3.4952

Therefore, the values of α^=3.4952\hat\alpha=-3.4952 and β^=0.4930\hat\beta=0.4930 both rounded off to 4 decimal places.

The variance of these estimates are derived using the formulas below.

var(β^)=s2Sxxvar(\hat \beta)={s^2\over S_{xx}} where s2s^2 is the sample variance. We use the sample variance s2s^2since the population variance is unknown. s2s^2 given by,

s2=Syyβ^×Sxyn2=86.9(0.4930×106.2)202=34.539518=1.9189s^2={S_{yy}-\hat \beta \times S_{xy}\over n-2}={86.9-(0.4930\times 106.2)\over 20-2}={34.5395\over18}=1.9189(4dp)

Therefore,

var(β^)=1.9189215.4=0.00891var(\hat\beta)={1.9189\over 215.4}=0.00891(5dp)

and

var(α^)=(1n+xˉ2Sxx)×s2=(120+9.312215.4)×1.9189=0.8681var(\hat\alpha)=({1\over n}+{\bar x^2\over S_{xx}})\times s^2=({1\over 20}+{9.31^2\over 215.4})\times 1.9189=0.8681 (4dp)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Mikias
02.11.23, 19:27

It is best and clear response thank you but from where we get a sample variance

Mulugeta Gashaw Wondie
28.11.22, 09:10

thanks

ermi
24.01.22, 09:17

thank you so much for your support.

Leave a comment