Question #289180

1. The Bok Chicken Factory is trying to figure out how to minimize the cost of producing 1200 units of chicken parts. The production function is q = 100L³5 Kº". The wage rate is birr 9 per hour and the rental rate on capital is birr 4 per machine hour.



A. Find the minimum cost of producing 1200 units.


B. Find the maximum output that can be produced for a total cost of birr 720.

1
Expert's answer
2022-01-21T10:13:19-0500

w=9

r=4

q=1200

q=100L12K12q=100L^\frac{1}{2}K^\frac{1}{2}

(αβ)(KL)=(wr)(\frac{\alpha}{\beta})(\frac{K}{L})= (\frac{w}{r})


(0.50.5)(KL)=(94)(\frac{0.5}{0.5})(\frac{K}{L})=(\frac{9}{4})


KL=94\frac{K}{L}=\frac{9}{4}

K=94L\frac{9}4L

Substitute this value in the production function

q=100(134)12(L12)q=100(\frac{13}{4})^\frac{1}{2}(L^\frac{1}{2})


1200=100(134L)121200=100(\frac{13}{4}L)^\frac{1}{2}


L12=(1200(100)(3.2512))L^\frac{1}{2}=(\frac{1200}{(100)(3.25^\frac{1}2)})


L=(1200(100)(3.2512))2L=(\frac{1200}{(100)(3.25^\frac{1}2)})^2

=144000032500=44.31= \frac{1440000}{32500}= 44.31


K=94LK= \frac{9}{4}L

K=94×44.31=99.69K= \frac{9}{4}\times 44.31= 99.69


TC= wL+rK

720=9L+4K


But L=94K\frac {9}{4}K

720=9L+94L720= 9L+\frac{9}{4}L

720=454L720=\frac{45}{4}L

L=(720×4)45=64L=\frac{(720\times 4)}{45}= 64



K=94×64=144K=\frac{9}{4}\times 64= 144



Total Output=144+64= 208

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS