1. The Bok Chicken Factory is trying to figure out how to minimize the cost of producing 1200 units of chicken parts. The production function is q = 100L³5 Kº". The wage rate is birr 9 per hour and the rental rate on capital is birr 4 per machine hour.
A. Find the minimum cost of producing 1200 units.
B. Find the maximum output that can be produced for a total cost of birr 720.
w=9
r=4
q=1200
"q=100L^\\frac{1}{2}K^\\frac{1}{2}"
"(\\frac{\\alpha}{\\beta})(\\frac{K}{L})= (\\frac{w}{r})"
"(\\frac{0.5}{0.5})(\\frac{K}{L})=(\\frac{9}{4})"
"\\frac{K}{L}=\\frac{9}{4}"
K="\\frac{9}4L"
Substitute this value in the production function
"q=100(\\frac{13}{4})^\\frac{1}{2}(L^\\frac{1}{2})"
"1200=100(\\frac{13}{4}L)^\\frac{1}{2}"
"L^\\frac{1}{2}=(\\frac{1200}{(100)(3.25^\\frac{1}2)})"
"L=(\\frac{1200}{(100)(3.25^\\frac{1}2)})^2"
"= \\frac{1440000}{32500}= 44.31"
"K= \\frac{9}{4}L"
"K= \\frac{9}{4}\\times 44.31= 99.69"
TC= wL+rK
720=9L+4K
But L="\\frac {9}{4}K"
"720= 9L+\\frac{9}{4}L"
"720=\\frac{45}{4}L"
"L=\\frac{(720\\times 4)}{45}= 64"
"K=\\frac{9}{4}\\times 64= 144"
Total Output=144+64= 208
Comments
Leave a comment