Question #281857

3. Imagine a perfectly competitive firm producing good A with cost function TC=400+20Q-2Q 2 +2/3Q 3 , where Q is quantity produced

a. determine the firm’s short run supply curve

b. What is the profit maximizing level of output when price of A is birr 180?

4. Suppose the perfectly competitive price is given as $46 and the total cost of the firm is given by TC=14X+2X 2 , find

a. The profit maximizing level of output for the firm?

b. The profit of the firm?


1
Expert's answer
2021-12-21T12:08:14-0500

3.

a). Firm’s short run supply curve

A perfectly competitive firm producing good A with cost function;

TC=400+20Q2Q2+23Q3TC=400+20Q-2Q^2+\frac{2}{3}Q^3

Firm's short run supply curve is marginal cost (MC).

MC=dTCdQ=ddQ(400+20Q2Q2+23Q3)MC=\frac{dTC}{dQ}=\frac{d}{dQ}(400+20Q-2Q^2+\frac{2}{3}Q^3)

MC=204Q+2Q2MC=20-4Q+2Q^2

b). Profit maximizing level of output

In case of perfectly competitive firm, profit maximizing occurs when;

MC=PMC=P

204Q+2Q2=18020-4Q+2Q^2=180

2Q24Q160=02Q^2-4Q-160=0

Q22Q80=0Q^2-2Q-80=0

Q210Q+8Q80=0Q^2-10Q+8Q-80=0

Q(Q10)+8(Q10)=0Q(Q-10)+8(Q-10)=0

Q10=0Q-10=0

Q=10Q=10

Profit=(180×10)[20(4×10)+2(10)2]Profit=(180\times10)-[20-(4\times10)+2(10)^2]

Profit=$1620Profit=\$1620


4.

a). Profit maximizing level of output

Price = $46

TC=14X+2X2TC=14X+2X^2

MC=dTCdQ=ddQ(14X+2X2)MC=\frac{dTC}{dQ}=\frac{d}{dQ}(14X+2X^2)

MC=X+4XMC=X+4X

MC=PMC=P

X+4X=46X+4X=46

5X=465X=46

X=465=9.29X=\frac{46}{5}=9.2\approx9

b). Profit of the firm

Profit=(46×9)[9+(4×9)]Profit=(46\times9)-[9+(4\times9)]

Profit=$369Profit=\$369





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS