Question #281008

The total cost function of a monopolistic producer of two goods is TC = 3x + xy + 4y, where x and y denote the number of units of good 1 and good 2, respectively.


If p1 and p2 denote the corresponding prices, then the demand function of each good is p1 = 60 − x + y and p2 = 40 + 2x − y. Find the maximum profit if the firm is contracted to produce a total of 200 goods.



1
Expert's answer
2021-12-22T13:55:54-0500

TC=3x+xy+4yTC = 3x + xy + 4y

P1=60x+yP_1 = 60 − x + y and P2=40+2xyP_2 = 40 + 2x − y

π=xp1+yp2(3x+xy+4y)\pi=xp_1+yp_2-(3x+xy+4y)

=x(60x+y)+y(40+2xy)(3x+xy+4y)=x(60-x+y)+y(40+2x-y)-(3x+xy+4y)

=60xx2+xy+40y+2xyy23xxy4y=60x-x^2+xy+40y+2xy-y^2-3x-xy-4y

=x2+2xy+57xy2+36y=-x^2+2xy+57x-y^2+36y


FOC:

Dπ(x,y)=[ΔπΔxΔπΔy]D\pi(x,y)=\begin{bmatrix} \frac{\Delta\pi}{ \Delta x} \\ \frac{\Delta\pi}{ \Delta y} \end{bmatrix}



=[2x+2y+572x2y+36]=\begin{bmatrix} -2x+2y+57 \\ 2x -2y+36 \end{bmatrix}


Solving simultaneously;

x=5.25 y=2.13x=5.25\ \\y=2.13


P1=605.25+2.13=56.88P_1 = 60 − 5.25 + 2.13=56.88 and P2=40+2(5.25)2.13=48.37P_2 = 40 + 2(5.25)-2.13=48.37


Maximum profit;

π=xp1+yp2(3x+xy+4y)\pi=xp_1+yp_2-(3x+xy+4y)

=5.25(56.88)+2.13(48.37)3(5.25)+5.25×2.13+4(2.13)=405.6=5.25(56.88)+2.13(48.37)-3(5.25)+5.25\times2.13+4(2.13)=405.6


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS