Price of X1=P1=10
Price of X2=P2=15
Cost function C=2X12+X1X2+2X22
Total Revenue R=P1X1+P2X2=10X1+15X2
Profit π=R−C=10X1+15X2−2X12−X1X2−2X22
To find the profit maximizing output of X1:
δX1δπ=0
⟹δX1δπ(10X1+15X2−2X12−X1X2−2X22)=0
⟹10+0−4X1−X2−0=0
⟹4X1+X2=10.........................................1
To find the profit maximizing output of X2:
δX2δπ=0
⟹δX2δπ(10X1+15X2−2X12−X1X2−2X22)=0
⟹0+15−0−X1−4X2=0
⟹X1+4X2=15...........................................2
Eq1×4⟹16X1+4X2=40Eq2×1⟹X1 +4X2=15 15X1 =25X1=1525⟹X=3g5X1≈1 unit
In Eq
1, 4X1+X2=10⟹X2=10−4(35)X2=330−20X2=(310)X2≈3 units
Comments
Leave a comment