Question #250062

An agent consumes quantity (x1,x2) of goods 1 and 2. Here is his utility function: π‘ˆ(π‘₯1, π‘₯2) = π‘₯13 π‘₯2, his budget constraint is: p1x1+p2x2=m.

(a) Calculate the agent’s Marshallian demand (x*1 , x*2 )

 (b) Calculate the agent’s indirect utility function.


1
Expert's answer
2021-10-12T09:53:37-0400

Utility function is x13x2x_1^3x_2 with budget constraint p1x1+p2x2=mp_1x_1+p_2x_2=m

At optimum,  MUX1MUX2=p1p2\frac{MU X_1}{ MU X_2} =\frac{p_1}{ p_2}

a) Therefore,

MUx1=3x12x2MUx2=x13At optimum, 3x12x2x13=p1p2β‡’3x2x1=p1p2β‡’x2=p13p2x1MUx_1=3x_1^2x_2\\MUx_2=x_1^3\\At\space optimum,\space \frac{3x_1^2x_2}{x_1^3}=\frac{p_1}{p_2}β‡’\frac{3x^2}{x_1}=\frac{p_1}{p_2}\\β‡’x_2=\frac{p_1}{3p_2}x1

Putting value of x2 in x1, we get

β‡’p1x1+p2(p13p2)x1=mβ‡’p1x1+p13x1=mβ‡’3p1x1+p1x1=3mβ‡’4p1x1=3mβ‡’x1βˆ—=3m4p1β‡’p_1x_1+p_2(\frac{p_1}{3p_2})x1=m\\β‡’p_1x_1+\frac{p_1}{3}x1=m\\β‡’3p_1x_1+p_1x_1=3m\\β‡’4p_1x_1=3m\\β‡’x1*=\frac{3m}{4p_1}

Similarly,

x2βˆ—=p13p2(3m4p1)x2βˆ—=m4p2x2^*=\frac{p_1}{3p_2}(\frac{3m}{4p_1})\\x2^*=\frac{m}{4p_2}

Therefore, the agent's Marshallian demand (x1βˆ—,x2βˆ—)=(3m4p1,m4p2)(x1^*,x2^*)= (\frac{3m}{4p_1},\frac{m}{4p_2})

b) Hence, indirect utility function is derived by putting x1* and x2* in utility function is

V(m,p1,p2)=(3m4p1)3(m4p2)V(m,p1,p2)=3m416p1p2V(m,p1,p2)=(\frac{3m}{4p_1})^3(\frac{m}{4p_2})\\V(m,p1,p2)=\frac{3m^4}{16p_1p_2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS