Solution:
a.). Derive MRTS = "\\frac{MP_{L} }{MP_{K}}"
Let x = L
y = K
MPL = "\\frac{\\partial Q} {\\partial L} = \\frac{1} {x^{0.5} }"
MPK = "\\frac{\\partial Q} {\\partial K} = \\frac{1} {y^{0.5} }"
"\\frac{MP_{L} }{MP_{K}} = \\frac{w }{r}"
"\\frac{\\frac{1} {x^{0.5} } }{\\frac{1} {y^{0.5} } } = \\frac{w} {r }"
"\\frac{y^{0.5}} {x^{0.5} } = \\frac{w} {r }"
x = "\\frac{r^{2}y} {w^{2} }"
y = "\\frac{w^{2}x} {r^{2} }"
b.). The cost function of the firm:
TC = rY + wX
TC = r("\\frac{w^{2}x} {r^{2} }") + w("\\frac{r^{2}y} {w^{2} }")
Comments
Leave a comment