Question #249954

Problem 5.8. For each of the following production functions, determine whether returns to scale are decreasing, constant, or increasing when capital and labor inputs are increased from K = L = 1 to K = L = 2. a. Q = 25K0.5L0.5 b. Q = 2K + 3L + 4KL c. Q = 100 + 3K + 2L d. Q = 5Ka Lb , where a+b= 


1
Expert's answer
2021-10-12T23:51:01-0400

Let's use F(zK,zL)=AKaLbF(zK,zL)=AK^aL^b

a. Q=25K0.5L0.5=25K^{0.5}L^{0.5}

Let Q0=F(K,L)=25K0.5L0.5_0=F(K,L)=25K^{0.5}L^{0.5} be initial production function then after multiplying by z we get:

Q1=F(zK,zL)=25(zK)0.5(zL)0.5=z0.5z0.525K0.5L0.5=z1.0Q0Q_1=F(zK,zL)=25(zK)^{0.5}(zL)^{0.5}=z^{0.5}z^{0.5}25K^{0.5}L^{0.5}=z^{1.0}Q_0

In this case F (zK,zL)>zF(K,L)(zK,zL)>zF(K,L)

This production function represents increasing returns to scale.

b. Q=2K+3+4KL=2K+3+4KL

Let Q0=F(K,L)=2K+3L+4KLQ_0=F(K,L)=2K+3L+4KL be the initial production function. Let us multiply it by factor z and call it Q1_1

Q1=F(zK,zL)=2(zK)+3(zL)+4(zK)(zL)=z(2K+3L+4zKL)Q_1=F(zK,zL)=2(zK)+3(zL)+4(zK)(zL) =z(2K+3L+4zKL)

So F(zK,zL)>zF(K,L)F(zK,zL)>zF(K,L)

Production function represents increasing returns to scale.

c. Let Q0=_0= F(( K,L)=100K+3K+2L()=100K+3K+2L( initial production function))

After multiplying it by factor z:

Q1=F(zK,zL)=100+3K+2L_1=F(zK,zL)=100+3K+2L

In this case F(zK,zL)<(zK,zL)< zF(K,L)zF(K,L)

100+3(zK)+2(zL)<100z+3(zK)+2(zL)100+3(zK)+2(zL)<100z+3(zK)+2(zL)

This is a decreasing returns to scale

d. Q0=F(K,L)=5KaLbQ_0=F(K,L)=5K^aL^b where a+b=1a+b=1

Let's multiply it by factor z

Q1=F(zK,zL)=5(zK)a(zL)b=zazb5KaLbQ_1=F(zK,zL)=5(zK)^a(zL)^b=z^az^b5K^aL^b

za+bQ0=zQ0z^{a+b}Q_0=zQ_0

Here F(zK,zL)=zF(K,L)F(zK,zL)=zF(K,L)

The production function represents a constant returns state.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS