Let's use F(zK,zL)=AKaLb
a. Q=25K0.5L0.5
Let Q0=F(K,L)=25K0.5L0.5 be initial production function then after multiplying by z we get:
Q1=F(zK,zL)=25(zK)0.5(zL)0.5=z0.5z0.525K0.5L0.5=z1.0Q0
In this case F (zK,zL)>zF(K,L)
This production function represents increasing returns to scale.
b. Q=2K+3+4KL
Let Q0=F(K,L)=2K+3L+4KL be the initial production function. Let us multiply it by factor z and call it Q1
Q1=F(zK,zL)=2(zK)+3(zL)+4(zK)(zL)=z(2K+3L+4zKL)
So F(zK,zL)>zF(K,L)
Production function represents increasing returns to scale.
c. Let Q0= F( K,L)=100K+3K+2L( initial production function)
After multiplying it by factor z:
Q1=F(zK,zL)=100+3K+2L
In this case F(zK,zL)< zF(K,L)
100+3(zK)+2(zL)<100z+3(zK)+2(zL)
This is a decreasing returns to scale
d. Q0=F(K,L)=5KaLb where a+b=1
Let's multiply it by factor z
Q1=F(zK,zL)=5(zK)a(zL)b=zazb5KaLb
za+bQ0=zQ0
Here F(zK,zL)=zF(K,L)
The production function represents a constant returns state.
Comments