Question #244750

Given Q=100K^0.5L^0.5 ,w= 30, r=40

i) Find the quantity of labour and capital that the firm should use in order to minimize the cost of

producing 1444 units of output

ii) What is this minimum cost?


1
Expert's answer
2021-10-03T14:14:36-0400

Given:

Q=100K0.5L0.5w=30r=4Q = 100K^{0.5}L^{0.5}\\w =30\\r =4

MPL=dQdLMPL=100K0.5×0.5L0.5MPL=50K0.5L0.5MPK=dQdKMPK=100×0.5K0.5L0.5MPK=50K0.5L0.5MP_L=\frac{dQ}{dL}\\MP_L=100K^{0.5} × 0.5L^{-0.5}\\MP_L=50K^{0.5}L^{-0.5}\\MP_K = \frac{dQ}{dK}\\MP_K=100 × 0.5 K^{-0.5} L^{0.5}\\MP_K = 50K^{-0.5}L^{0.5}

Cost minimizes at, 

wr=MPLMPK3040=50K0.5L0.550K0.5L0.534=KL3L=4Kor,K=34LL=43KK=34L\frac{w}{r} = \frac{MP_L}{MP_K}\\\frac{30}{40}=\frac{50K^{0.5}L^{-0.5}}{50K^{-0.5}L^{0.5}}\\\frac{3}{4}=\frac{K}{L}\\3L=4K\\or,\\ K = \frac{3}{4}L\\L=\frac{4}{3}K\\K=\frac{3}{4}L

Insert values in:

Q=100K0.5×43K0.5Q=4003KWhen Q=14441444=4003KK=10.83forL,Q=100L0.5×34L0.5Q=3004LWhen Q=14441444=3004LL=19.25Q = 100K^{0.5}×\frac{4}{3}K^{0.5}\\Q = \frac{400}{3} K\\When\space Q = 1444\\1444 = \frac{400}{3}K\\K =10.83\\ for L,\\Q = 100L^{0.5}×\frac{3}{4}L^{0.5}\\Q = \frac{300}{4} L\\When\space Q = 1444\\ 1444=\frac{300}{4} L\\L =19.25


b). 

C=wL+rKC=30×19.25+40×10.83C=1010.7C = wL + rK\\ C =30×19.25+40×10.83\\ C = 1010.7


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS