Question #244547
Suppose the demand for commodity X is estimated as follows:
Qx=68-1.6Px^2 + 0.6Py + 0.08E

Where:
Qx=quantity of commodity X
Px=N20 is the price of X
Py= N40 is the price of Y
E=N10,000 is the income of the consumer

Calculate:
1. The price elasticity of X
2. The cross-price elasticity of demand for X with respect to the change in the price of Y. Use your result to determine whether X and Y are substitutes or complements
3. The income elasticity of demand for X. Use your result to determine whether X is a normal or inferior commodity
1
Expert's answer
2021-09-29T18:01:26-0400

Given

Qx=681.6Px2+0.6Py+0.08EPx=20Py=40E=10000Qx=681.6(20×20)+0.6(40)+0.08(10000)Qx=68640+24+800Qx=252Qx=68-1.6Px^2+0.6Py+0.08E\\Px=20\\Py=40\\E=10000\\Qx=68-1.6(20×20)+0.6(40)+0.08(10000)\\Qx=68-640+24+800\\Qx=252

1. The price elasticity of X

=dxdpx×pxQx=1.6×20252=0.130.13<1 inelastic=\frac{dx}{dpx}×\frac{px}{Qx}\\=-1.6×\frac{20}{252}\\=-0.13\\-0.13<1\space inelastic


2. The cross-price elasticity of demand for X with respect to the change in the price of Y.

=dxdpy×pyQx=0.6×40252=0.0950.095>0 substitutes=\frac{dx}{dpy}×\frac{py}{Qx}\\=0.6×\frac{40}{252}\\=0.095\\0.095>0\space substitutes


3. The income elasticity of demand for X.

=dxdm×mQx=0.08×10000252=3.173.17>0<1 normal good=\frac{dx}{dm}×\frac{m}{Qx}\\=0.08×\frac{10000}{252}\\=3.17\\3.17>0<1\space normal\space good


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS