Answer to Question #238385 in Microeconomics for vgha

Question #238385

U(x1​,x2​)="(\\sqrt{x_1}+\\sqrt{x_2})^2"


1
Expert's answer
2021-09-20T16:37:23-0400

Find the partial derivatives of X1 and X2 using the utility function

U("X_{1}" ​,"X_{2}" ​)= "( x_1^{0.5} + x_2^{0.5} )^{2}"

Using chain rule we partially differentiate the utility function with respect to "X_{1} and X_{2}"

Let Z = "x_1^{0.5} + x_2^{0.5}"


"\\frac{\u0257z}{\u0257x_{1}} = \\frac{0.5}{X_{1}^{0.5}}"


"\\frac{\u0257z}{\u0257x_{2}} = \\frac{0.5}{X_{2}^{0.5}}"


"U(X_{1}\n\u200b\n \u200b,X_{2}\n\u200b\n \u200b)" = Z"^{2}"


"\\frac{\u0257u}{\u0257z} =" 2Z


"\\frac{\u0257u}{\u0257x_{1}} = \\frac{0.5}{X_{1}^{0.5}} \\times 2[x_1^{0.5} + x_2^{0.5}]"


"\\frac{\u0257u}{\u0257x_{1}} = 1 + 2x_2^{0.5}"


"\\frac{\u0257u}{\u0257x_{2}} = \\frac{0.5}{X_{2}^{0.5}} \\times 2[x_1^{0.5} + x_2^{0.5}]"


"\\frac{\u0257u}{\u0257x_{2}} = 1 + 2x_1^{0.5}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS