U(x1,x2)="(\\sqrt{x_1}+\\sqrt{x_2})^2"
Find the partial derivatives of X1 and X2 using the utility function
U("X_{1}" ,"X_{2}" )= "( x_1^{0.5} + x_2^{0.5} )^{2}"
Using chain rule we partially differentiate the utility function with respect to "X_{1} and X_{2}"
Let Z = "x_1^{0.5} + x_2^{0.5}"
"\\frac{\u0257z}{\u0257x_{1}} = \\frac{0.5}{X_{1}^{0.5}}"
"\\frac{\u0257z}{\u0257x_{2}} = \\frac{0.5}{X_{2}^{0.5}}"
"U(X_{1}\n\u200b\n \u200b,X_{2}\n\u200b\n \u200b)" = Z"^{2}"
"\\frac{\u0257u}{\u0257z} =" 2Z
"\\frac{\u0257u}{\u0257x_{1}} = \\frac{0.5}{X_{1}^{0.5}} \\times 2[x_1^{0.5} + x_2^{0.5}]"
"\\frac{\u0257u}{\u0257x_{1}} = 1 + 2x_2^{0.5}"
"\\frac{\u0257u}{\u0257x_{2}} = \\frac{0.5}{X_{2}^{0.5}} \\times 2[x_1^{0.5} + x_2^{0.5}]"
"\\frac{\u0257u}{\u0257x_{2}} = 1 + 2x_1^{0.5}"
Comments
Leave a comment