Given a short run cost function as T C =1 /Q 3 (3 is under subscript ) - 2Q 2(2 is under subscript ) +60Q+100 , find the minimum value of AVC and MC
TC=13Q3−2Q2+60Q+100TC=\frac{1}{3}Q^3-2Q^2+60Q+100TC=31Q3−2Q2+60Q+100
TVC=13Q3−2Q2+60QTVC=\frac{1}{3}Q^3-2Q^2+60QTVC=31Q3−2Q2+60Q
To find the minimum value of MC,
MC=dCdQ MC=\frac{dC}{dQ}\:MC=dQdC
MC=Q2−4Q+60MC=Q^2-4Q+60MC=Q2−4Q+60
dMCdQ=2Q−4=0\frac{dMC}{dQ}=2Q-4=0dQdMC=2Q−4=0
Q=42Q=\frac{4}{2}Q=24
Q=2Q=2Q=2
To find the minimum value of AVC,
AVC=TVCQ=13Q3−2Q2+60QQAVC=\frac{TVC}{Q}=\frac{\frac{1}{3}Q^3-2Q^2+60Q}{Q}AVC=QTVC=Q31Q3−2Q2+60Q
AVC=13 Q2−2Q+60AVC=\frac{1}{3}\:Q^2-2Q+60AVC=31Q2−2Q+60
dAVC dQ=23Q−2=0\frac{dAVC\:}{dQ}=\frac{2}{3}Q-2=0dQdAVC=32Q−2=0
23Q=2\frac{2}{3}Q=232Q=2
Q=3Q=3Q=3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment