Question #229407

1.      Given market demand Qd = 50 - P, and market supply P = Qs + 5

A.      Find the market equilibrium price and quantity

2.      Given utility function U= where PX = 12 Birr, Birr, PY = 4 Birr and the income of the consumer is, M= 240 Birr.

A.      Find the utility maximizing combinations of X and Y.

B.      Calculate marginal rate of substitution of X for Y (MRSX,Y) at equilibrium and interpret your result


1
Expert's answer
2021-08-24T17:06:31-0400

1a

Qd=50P,P=Qs+5>Qs=P5.Qd= 50 - P, P = Qs + 5 -> Qs = P - 5.

The market equilibrium price and quantity are:

Qd=Qs,50P=P5,2P=55,P=$27.5.Q=27.55=22.5units.Qd = Qs,\\ 50 - P = P - 5,\\ 2P = 55,\\ P = \$27.5. Q = 27.5 - 5 = 22.5 units.

2)

A)



MUx=0.5y0.5x0.5MU_x=0.5 \frac {y^{0.5}}{x^{0.5}}MUy=0.5x0.5y0.5MU_y=0.5 \frac {x^{0.5}}{y^{0.5}}MUxpx=MUypy{\frac{MU_x}{p_x}}=\frac {MU_y}{p_y}x×px+y×py=Mx \times p_x+ y \times p_y=My=3xy=3x12×x+4×y=24012 \times x+4 \times y=240x=10,y=30.x=10, y=30.

D)





Uxy=0.25(xy)0.5\frac {\partial U}{\partial x \partial y} =\frac {0.25} {(xy)^{0.5}}MRSx.y=Uxy=0.25(10×30)0.5=0.015MRS x.y = \frac {\partial U} {\partial x \partial y} = \frac {0.25}{(10 \times 30)^{0.5}}=0.015

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS